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Lecture 1 - Monday, May 6

Recall that if Sy, ...,S, are sets, then the Cartesian Product S; x - - - x S, also denoted as H Si,

i=1
is the set

51><~--><Sn={(9617--~733n)\mjesﬁj:lw--»n}

Definition 0.1: N-dimensional Euclidean Space, Vector

The N-dimensional Euclidean Space is the N-fold Cartesian product R =R x --- x R. Element
x = (x1,...,2,) € R" is called a vector is simply a point in R™. The numbers z1,...,z, are called
the coordinates.

Recall that R™ is a vector space over R with coordinate-wise operations: that is, if z = (21,...,z,) €
R™ and y = (y1,-..,yn) € R" and A € R, we have

I’+y:(l’1 +yla"'7xn+yn)
Ar = (A1, .., A\xy)

Definition 0.2: Zero Vector / Origin

The zero vector, or the origin, is the vector 0 = (0,...,0).

1 The Euclidean Inner Product and Distance in R"”

Example 1.1: Absolute Vector

. . . T ifx>0
In R, the distance of z € R is from O in the absolute vector, |z| =

—x otherwise

||
—

] ]
T T

[0) T

For z,y € R, the distance of z and y is |z — y|.

Example 1.2: In R?

In R?, there is a natural notion of distance of a vector z = (z1,z2) to 0.



[l := /2] + 23

For z,y € R?, we can define the distance of  and y by

lz =yl = V(21— 11)% + (22 — 12)?

Y
z —y| We can find that ||z — y[|* = ||z]|*+|ly||” if and
only if the “dot product”, z oy = x1y1 + T2yo
x is zero, because x oy = ||z|| - |ly|| cos @ (follow

from the law of cosine).

We extend this to R”

1.1 Standard Inner Product

Definition 1.1: Euclidean Inner Product (Dot Product)

The Euclidean inner product (or dot product) on R¥ is the function
o: RV xRY 5 R

N
i=1

Proposition 1.1
The dot product satisfies that for all z,y € RY and A € R, the following holds:
1. zoz >0
2. xox =0if and only if z =0
3. zoy=youx
4. zo(y+z)=zoy+xzoz

5. (Ar)oy = Az oy)



Properties 3, 4 and 5 imply that o is bilinear.

1.2 (Euclidean) Norm
Definition 1.2: Norm

For z = (z1,...,zy5) € RV, we define the (Euclidean) norm of x by

lall = ooz =

Proposition 1.2

The function |-|| : RY — [0, 00) satisfies
Lzl =0
2. ||zl =0 if and only if z =0

3. ([ Azl = Al ||

We would also like to show that this satisfies the triangle inequality:
lz+yll < llll + gl for all 2,y € RY

For this we need the Cauchy-Schwartz inequality.

1.3 Cauchy-Schwartz Inequality

For all z,y € RY we have
[z oyl <zl -yl

Moreover, equality holds if and only if x = ty or y = tx for some t € R.

Proof. We may assume that both x and y are non-zero. For all t € R, we know that
(x—ty)o(x—ty) >0

then we have
p(t)=zox—2t(xoy)+t*(yoy) >0



Notice that this is a quadratic function of ¢, which implies that p(¢) has at most one root, thus
A=[2woy)?] —d@oa)(yoy) <0
and the remaining follows naturally.

Corollary 1.1: Triangle Inequality

For all z,y € RY we have
o +yll < llzll + [yl

Proof. We simply have

lz+yl* = (z+y)o(z+y)
= [lz|® + Iy + 2(z o v)
< el + llyll® + 21|l |1yl
= ([l + llyl)?

thus completing the proof.
Lecture 2 - Wednesday, May 8
Theorem 1.2: Properties of the Euclidean Norm

The Euclidean norm |- : RN — [0, 00) satisfies the following for all z,y € RY and A € R:
1. Proposition 1.2

2. Triangle inequality
e+ yll < llzll + [yl

3. Reversed triangle inequality

Hizll =Myl | < [l =yl

Proof. exercise.

Definition 1.3: Distance
For z,y € RY, define the distance of z and y by
d(z,y) := [lz =y

Notice that for all z € RV,
d(z,y) < d(z,2) + d(z,y)



which is a direct consequence of the Triangle Inequality 1.1.

2 Angles between Vectors in RV

In R?, we know that x oy = ||| ||y|| cos @, where 6 is the angle between x and y.
In RN, Cauchy-Schwartz inequality 1.1 implies that for =,y # 0, then

xoy

oY e,
]yl
we can find a unique 6 € [0, 7] such that
[¢]
cosf = Y
]yl

Definition 2.1: Angle between z and y

We define the angle between x and y as 6.

2.1 Orthogonal
Definition 2.2: Orthogonal

We say z and y are orthogonal if § = /2.

3 Topology on RY - Open Sets and Closed Sets

In topology, we study the notion of closeness (limits, convergence, continuity, etc.) through the collection

of open sets / closed sets.
Definition 3.1: Open Ball and Closed Ball
The open ball in RY of radius » > 0 centered at z € RY is the set
B(2) = {y € RY : |z —y| <1}

Remark: the other notation is B(z,r).
The closed ball in RY of radius r > 0 centered at z € RY is the set

Bifz] ={y e RY : [lz —y[| <1}

Example 3.1
1. In R, B,.(z) is the open interval (z — r, 2 + r). Similarly, B, [z] is the closed interval [z —r,x + r].

2. In R?, we have



Definition 3.2: Open Set and Closed Set

1. We say that U C R¥ is open if for all 2 € U, there exists ¢ > 0 (depending on x) such that
B.(x) CU.

2. We say that F C RY is closed if its complement,
Fe={yeRY : y¢F},

is open.

Notice that @ and RY are open; and they are also closed. They are known as clopen.

Proposition 3.1: Open Balls are Open, and Vice Versa
1. The open ball B, (x) is open.
2. The closed ball B,[z] is closed.
Proof. The proof consists of two parts:

(Part 1):
Let y € B,.(z), we want to find € > 0 such that B.(y) C B,(z). We know that for z € RY

d(z,2z) < d(z,y)+d(y, z)

hence we can take ¢ = r — d(z,y), then £ > 0 and B.(y) C B, (z).
(Part 2):
Use the Reversed Triangle Inequality:

Hlz =zl =llz—y+y -zl = [llz —yll = [z = yl|

We want to show that
Belz]° ={y eR" : |ly—=| >r}

is open. Choose y such that ||y — x| > r. Let ¢ = ||z —y|| =7, so e > 0. Also let z € B.(y), then we have



lz =yl < e, which implies that — ||z — y|| > —e = r — ||z — y||. Therefore,

|z =2l > |llz =yl = lly — 2|
=z —yll = llz —yll|
>z =yl +r—llz -yl

=T

Hence z € B,[z]° is needed wich means that B.(y) C B,[z]°. O

3.1 Permanence Properties of Open Sets
Theorem 3.1: Permanence Properties of Open Sets

1. The union of an arbitrary collection of open sets is open.

Precisely, if A are indices and {E, | o € A} are open sets, then

EEUEa

a€cA
is open.

2. The intersect of a finite collection of open sets is open.

Proof. 1. Let x € E, then there exists a € A such that z € E,. Since E, is open, then there exists some
€ > 0 such that
Be(x) CEoC | JEa=E
a€A

which implies that E is also open
2. Let E1, Ea,...,E,, be open sets in RY and we let E = ﬂ?il E;. Let x € E. Fori=1,...,m, we can
find e; > 0 such that B.(z) C E;. So we can set ¢ = min{e; : i =1,...,m}. Then
m
B-(x) C ﬂ E,=FE
i=1

giving that E is open.

Lecture 3 - Friday, May 10

Example 3.2

The intersection of an infinite collection of open sets need not to be open, Consider that for all m > 1.
take E,, = By/m(n), then E,, is open, but the intersect is a single point n, which is indeed closed.

10



3.2 De Morgan’s Law
Theorem 3.2: De Morgan’s Law

Let {E, : a € A} be a collection of subsets of a set A, then
(U Ea> M E:
aEA ach
(ﬂ Ea> U &
acN acA

Corollary 3.1: Properties of Closed Sets
1. The intersection of an arbitrary collection of closed sets is closed

2. The union of a finite collection of closed sets is closed

Proof. This follows the De Morgan’s Law 3.2. O

Example 3.3

The sphere
9B, (x) ={y eRY : |ly— x| =1}

is closed because

0B, (z) = B,[z] N B.(x)°

Example 3.4

The union of an infinite collection of closed sets need not be closed: Take F,,, = {1/m}
(ie. (1/m,...,1/m) € RY), then F,, is closed,
Exercise: Show that |J,-_, F}, is not closed.

Proof. To show that | J)-_; Fy, is not closed, it suffices to show that the complement is not open. Consider
the point O = {0}, we can easily find that we are not able to construct an open ball that is contained in the

complement, thus completing the proof. O

4 Sets that are neither closed not open

In general, an arbitrary subset S of RY need not be closed nor open.

11



Example 4.1

In R, consider (a, b].

Example 4.2

Let
SE{(I7y’Z) GRL‘)’ : y2+22 :171‘>0}

then S is neither closed nor open.

Proof. 1. (not open)
Take p = (1,0,1) € S, then for € > 0, we claim that B.(p) NS¢ # & (i.e. there are points in the open
ball around p but not in S). We can simple set the point to be ¢ = (1,0,1 + £/2).

2. (not closed)
Take p = (0,0,1) € S¢, given that € > 0, we want to show that S¢ is not open. Take ¢ = (¢/2,0,1),
then ¢ € S and g € B.(p), so B-(p) NS # & = B.(p) £ S°.
O]

4.1 Cluster Point

Definition 4.1: Cluster Point

1. A point p € R¥ is called a cluster point (or accumulation point) of S if for every ¢ > 0, we
have

(Be(p)\{p}) NS # @

Equivalently, for every open set U with p € U, there exists t € SN U and = # p.

2. We denote by S’ the set of all cluster points of S.

Example 4.3: Every p € RY is a cluster point of Q"

Every p € RY is a cluster point of QV = {(q1,...,qn) €ERY : ¢; €Q, i=1,...,N}.

Proof. To see this, let p = (p1,...,pn) € RY and £ > 0. By density of Q in R, for each i = 1,..., N,
we can find ¢; € Q, ¢; # p; such that |p; — ¢;| < e/V/N, set ¢ = (c1,...,cn) € QY, then

lp—cll =

and p # c. Hence c € (B:(p)\{p}) N QY is needed. O

12



Example 4.4

Let S be a finite set,
S={r1,...,xNn} eRrRY

then S has no cluster point.

Proof. To see this, take p € RY and £ > 0 with

e <min{|p —z| : z €S,z #p}

4.2 Characterization of Closed Sets
Theorem 4.1: Characterization of Closed Sets
Let F C RN, TFAE
1. F' is closed

2. FFCF

Proof. 1. (1=2)
Suppose F is closed. Let p € F¢, we have to show that p ¢ F’. Since F is closed, F* is open, hence
there exists € > 0 such that B.(p) C F¢. In particular,

B:(p)NF =0
giving that p ¢ F’, we have F' C F.
2. (2=1)
Suppose F’ C F, we will show that F° is open. Take p € F°, then p ¢ F’, so there exists € > 0 such
that

(Be(p)\{p}) NF =2

Thus B.(p) N F = @. Since p € F<, so B.(p) C F° and thus F* is open.

4.3 Closure

Definition 4.2: Closure

Let S C RY, define the closure of S by S =SUS’.

13
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Proposition 4.1

Let S C RY. Then
In particular, we have S is closed.

Corollary 4.1

S is the smallest closed set contans S. i.e. if S C F and F is closed, then S C F.

Definition 4.3: Boundary and Interior
Let S C RY,
1. We say that a point p € RY is a boundary point of S if for every € > 0, we have
B:(ppnS#2 & B(p)NS#2

The boundary, 95, is the set of all boundary points of S.

2. We say that a point p € RY is an interior point of S if there exists ¢ > 0 such that B.(p) C S.
The interior of S, denoted by S°, is the set of all interior points of S.

We have
secScs
Example 4.5
Let S = (0,1] U {2}, we have
05 ={0,1,2}
S"=10,1]
S°=(0,1)
S=1[0,1uU{2}

14




Proposition 4.2

Let 2 € RY and r > 0, then

1. 0B,(z) = 0B, [z] = {y € RN : ||y —z| = r}

Proof. 1. Let y € RN with ||y — 2| = r. It suffices to show that for all € > 0,

2.

B-(y)NB.(z) A2 & B.y)NB.[z]°# 2
since B, (x) and B,.[z] are open. Let A > 0, so we have
Ay =)l = Aly — =[] = Ar

Set zx = 2 + A(y — ). Notice that if A < 1, then z) € B,(z), and if A > 1, then z) € B,[z]°. Take
0 <A< 1with1l—X<e/r, then z) € B,(z) and

[2x —yll = llz + Ay — ) — v
=1=A)ly -zl
€
< -.r=c¢
r
To get zx € B:(y) N B, [x]¢, take A > 0 with A — 1 < &/r, then z) € B,[z]® and is above z) € B.(y).

‘We know that

B.(z) = B.(z) UB.(z)

If p € B,[x]¢, then p ¢ B, (x)’, so

B, (x) C B,[x]

By part a), if p € RY and ||p — z|| = r, then p € 9B,.(z) and hence p € B,.(x), thus

B.[x] C Bo(@)

Proposition 4.3

Let S C RV, then

1. S° is open, and

2. §°=5\0S

15



Proof. 1. Let x € S°, since z is an interior point, so we can find £, > 0 such that
B. (z) €S
If y € B, (z), then there exists § > 0 such that
Bs(y) € Be,(z) € S
So y is also an interior point. This gives that
B, (x) C S°

This shows that S° is open, and

s°=|JB,xc |J U

reS° Ucs
U open

Now let U C S, U open and let x € U. Since U is open, there exists € > 0 such that
B.(x) CUCS

suggesting that x € S°, hence completes the proof.

2. Let x € S§°, we want to show that z ¢ 5. We know there exists ¢ > 0 such that
B.(z) C S

hence we have
B-(x)NS°=g = S§°CS\dS

On the other hand, let = € S\9S, hence we can find € > 0 such that

Be(x)mSCZQ = res°

Lecture 5 - Wednesday, May 15

S° is the largest open set contained in S.

16



4.4 RY is the Disjoint Union
Theorem 4.2
Let S C RY, then R¥ is the disjoint union
RY = S° 1198 L1 (59)°
Remark: The symbol LI implies that this is a disjoint union.

Proof. Clearly S° N (5¢)° = @ since §° C S and S¢° C S¢, and if p € S° U (5°)°, then p ¢ 95, thus the
above union is disjoint. To see that RY = S°U 9SS U (5°)°, let z € RV if z € S° U (5°)°, we are done.
Otherwise given € > 0, we have B.(z) NS¢ # & because x ¢ S° and B.(z) NS # @ because = ¢ (5¢)°. Since
¢ is arbitrary, thus we have x € 95S. O

Corollary 4.2

For any S C RY, we have
S=5uUds

Proof. Exercise. O

5 Compactness

Compactness is an important concept in topology especially in connection with continuity.

Definition 5.1: Open Cover, Compact

1. Let S € RY. An open cover of S is a collection, g = {ga}aca, of open subsets of RV that

SgUga

aEA

covers S. i.e.

2. We say that K C RY is compact if every open cover g = {g4 }aea of K admits a finite subcover.
i.e. there exists a finite subcollection ¢’ = {gn, : i =1,...,n} of sets from g such that

n
1=1

Example 5.1: Finite Sets Are Compact
If S ={x1,...,2,} is finite, then S is compact.
Proof. Let g = {ga}aea be an open cover of S. Since S C [J,cp 9o, for each i =1,...,n, we can find a; € A

such that x; € ga,. Set ¢ = {ga, : i = 1,...,n}, then ¢ is a finite collection of sets from g that cover S,
thus S is indeed compact. O

17



Example 5.2: Open Balls Are Not Compact

Let r > 0, z € RY, then B,(x) is not compact.

Proof. We need to exhibit an open cover g = {gn }aeca that admits no finite subcover. Let k£ > 0 be such that
1/k <r. For each m > k, we set g,, = B,_1/mm(2). Then each g,, is open and we set g = {gm }m>r. Then g
is a open cover of B,.(z). We claim that g admits no finite subcover. SFAC that ¢’ = {gm, : i =1,...,1} is
a finite subover for B,(z). Let j be such that m; = max{m; :i=1,...,l}. Then

BT(.’E) - gmj = Br—l/mj (ZL’)
which is a contradiction because if u € RY, |jul| = 1, and let 7 — 1/m; < ¢ < r, then 2z = z + qu, 2 € B,.(v),

but z & B._1/m, (z). O

Proposition 5.1

Suppose K C RY is compact and F C K is closed, then F is compact.

Proof. Let g = {ga}aeca be an arbitrary open cover of F, then

KCFUF°C (U ga> U Fe°

acA

so g = gU{F*} is an open cover of K because F° is open. Since K is compact, g admits a finite subcover

7 ={ga,:i=1,...,n}. Now

F=FNKCFn (Ogai)

i=1
n
= U FNga,
i=1
c U v
9€g’ ,g#F¢

Setting ¢’ = g'\{F°}, we see that ¢’ is a finite subcover of F' containing of sets from g. O

Definition 5.2: Bounded

We will say that a set S C RY is bounded if there exists m > 1 such that

S C B[0]

Theorem 5.1

Suppose K C R¥ is compact, then K is closed and bounded.

18



Proof. Suppose K is compact

1. Bounded:
For each m > 1, let g, = B (0), then g, C gmy1, and gy, is open. Let g = {gm }m>1, then g is now
an open cover of K. By compactness of K, g admits a fintie subcover ¢’ = {gm, : 1 = 1,...,1}. Let j
be such that m; = max{m; :i=1,...,l}. Then K C g,; C Bp,[0].

2. Closed:
For each € K°, we need to find € > 0 such that B.(«) C K°. For each y € K, we set ¢, = ||z — yl| /2,

then ¢, > 0 because « ¢ K. By the reverse triangle inequality, we have
B, (x)N B, (y) =@
For each y € K, we set g, = B, (y) and let
g={gy:y € K}

Then g is an open cover of K. By compactness, we can find a finite subcover from g, say g = {g,, :

j=1,...,n}. Let e =min{e,, : j=1,...,n}.
O

Lecture 6 - Friday, May 17

If F C RY is closed and K C R is compact (so it’s also closed and bounded), then F N K is compact,
since F'N K is closed (3.1) and FNK C K (5.1).

Theorem 5.2
If £ C K is an infinite set and K is compact, then E has a cluster point in K.
Proof. SFAC that F has no cluster point in K. Since F C K, by A01-Q4, we have
E'CK' CK

because K is closed. Thus we must have B/ = &. Then FE is closed since B = @ C E. It follows that E is
compact (5.1). Now if p € E, it is clear that p ¢ E’, so we get ¢, > 0 such that

Be,(p) N E = {p}

Then the open cover {B., (p) : p € E} admits no finite subcover because E is infinite. O

5.1 Heine-Boul Theorem

We wish to prove the converse, that is, we want to show that if K T RY is closed and bounded, then K is

compact.

19



Recall the nested interval principle:
If I,, = [am, bm] C R is a nested sequence of closed and bounded intervals in R, then

In# 9
1

Y

ie. Iy, D ILne1 2 - for all m. Moreover, if lim,, (b, — ay,) = 0, then

={z}

1

Y

is a single point.

Definition 5.3: N-cell

For each j =1,...,N, let a;,b; € R with a; < b;. We call the Cartesian product

I = [al,bl] X oo X [aN,bN]

an N-cell.

Let I; O Is O --- be an increasing sequence of N-cells, then
() In#2
m=1

Moreover, if lim,, ||by, — @] = 0, then

m I = {z}

is a single point, where here a,,, by, € RY and Iy, = [am 1, bm.1] X =+ X [@m N, b N]-

Proof. Since I,,, 2 Ip,41, we have

[@m,j> bm,j] 2 [@m+1,45 Omt1,5]

By nested interval principle in R, there exists

oo
z]e m[a/m,g7bm,j] .7:177N
m=1

We set z = (21,...,2n), then 2 € (\oo_; Ln. If limy, oo |brm — am|| = 0, then since (b, ; — am,;) <
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[|bm, — am ||, we deduce that lim,, o0 (bm,j — @m,;) = 0. Hence

o0

() [@m.j bm.g] = {2}

m=1

Then -
m Im = {2}
m=1
O
5.2 N-cell is Compact
Theorem 5.5
Let I = [a1,b1] X -+ [an,bn] be an N-cell, then I is compact.

Theorem 5.6: Heine-Boul Theorem
Let K C RY, then TFAE
1. K is compact,

2. K is closed and bounded.

Proof. We have shown that compact implies closed and bounded (5.1). Therefore it suffices to show the
other direction: Suppose K is closed and bounded. Since it is bounded, we find that there exists some
M > 0 such that K C By[0]. Then if z € K, we have |z;| < ||z;|| < M and so K is contained in the N-cell

Iy =[-M,M] x - x [-M, M]

N terms

By the previous theorem 5.5, I,,, is compact, and because K C I, and K is closed, thus K is compact
(5.1). O

Lecture 7 - Tuesday, May 21
LMAO Camila didn’t show up to the class today.
Lecture 8 - Wednesday, May 22

Proof. This is the proof of Theorem (5.5).
Let a = (a1,...,an) and b= (by,...,bn). Set

0=[b—a| =

> (b — a;)?

i=1

Notice that if z,y € I, then ||z —y|| < 6. SFAC that I is not compact, then there exists an open cover
9 = {ga taen for I that admits no finite subcover.
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1. Step 1:
Foreach j=1,...,N,let ¢; = % Then the intervals [aj, ¢;], [c;, b;] gives 2V N-cells,

Jl :{Il,l Sl: 1,...,2N}
such that I = Ulivl I, where each N-cell I ; is the Cartesian product
[dl,el] X - X [dN,eN]

with
[d;, e5] € {lay, ¢ [c), b51}

It follows that there is some I € {1,...,2"} such that the N-cell I;; connot be covered by a finite
collection of sets from g. Let I; be such an N-cell. Notice that

(a) 1 D) 11
(b) I; cannot be covered by a finite collection of sets from g

(c) Let a; = (a11,...,a1n) and by = (b11,...,b1n) be such that
I = [an,bn] X X [a1N7b1N}
then if x,y € I,

e =yl <[y = arl| =

2. Step 2:

Induction. Suppose n > lisfixedand I DIy DI O --- D I, O --- are N-cells where each I; cannot
be covered by a finite collection of sets from g, and if z,y € I;, we have ||z — y| < §/2'. Repeat the
argument in step 1 to get an N-cell 1,41 C I, that cannot be covered by a finite collection of sets from
gand x,y € I);1, then ||z — y|| < §/2"L. We have proved the existence of a sequence I, I1, I, ... with
the following properties:

(a) IQIIQIQQQInQ

(b) Each I,, cannot be covered by a finite collection of sets from g

(c) If z,y € I, then ||z — y|| < d6/2"

By Theorem 5.3 we can find 2 € (), I,,. Since z € I C Uaea 9o, there exists some 3 € A such that
z € gp. Because g is open, there exists € > 0 such that B.(z) C gg. Let n be such that §/2" < e. We
know that z € I, and if y € I,,, we have

ly — 2]l < O <
_ 2
y—2ll < 55
giving that y € B.(z). This shows that
I, CB.(z) C 9p

which is a contradiction because I,, can be covered by the singleton {gs} € g.
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6 Connected Sets

Intuitively, a set S C RV is connected if any two points x,y € S can be connected by a continuous path
that is completely contained in S.

We define connected sets using topology.
Definition 6.1: Disconnection and Connection
Let S C RY be a set. We say that a pair of open set {U,V} € RY is a disconnection for S if
1. SCUUV
2. 5NU#@and SNV £ o
3.S5NUNV =y

If a disconnection exists, we say that S is disconnected. Otherwise we say S is connected.

Example 6.1

Z is not connected, set U = (—00,1/2) and V = (1/2, +00).
Q is not connected, set U = (—o00,v/2) and V = (v/2, +00)

6.1 Interval is Connected

Theorem 6.1

The interval [0, 1] is connected.

Lecture 9 - Friday, May 24

Proof. SFAC that {U,V} is a disconnection. WLOG we may assume 0 € U. Since U is open, there exists
some gg > 0 such that (—eg,e0) C U. We may assume g < 1. Then [0,e9) C U. It follows that

{0<e<1:[0,e) CU}

is not empty. We let tg = sup{0 <e < 1:[0,e) C U}. Notice that t; < 1.

1. Claim 1: [0,t9) CU.
Indeed, for each n > 1, let r,, > 0 with ¢y — 1/n < r,, < tg such that [0,r,) C U. We then have

[O,to) = G [Ovrn) cU

n=1

23



2. Claim 2: to ¢ U.
SFAC ty € U, thus we obtain that ty # 1 because if to = 1 € U, then

UD [O,to) U {to}
=[0,1) u{1}
—[0,1]

which contradicts property (¢) as we simultaneously have
unfo,1nv=o 0,1]NV £

Therefore, there exists § > 0 such that (tp — 9,9+ 0) C U. We may assume ¢y + 6 < 1. Then we know
that
[OvtO + 6) c [Ovto) U [to,to + 6) c U

contradicting the definition of tg.

Therefore we deduce that tg € V. Since V is open, we can find §y > 0 such that (tg — dy, ¢ +dy) C V. But
then take some 0 < r < tg, r > tg — oy, then r € [0,1], and r € U by claim 1, while » € V. Contradiction
(see theorem 6.1). O

6.2 Higher-Dimensional Examples

Definition 6.2: Convex

We say that C C RY is convex if for all z,y € C, we have
te+ (1—t)yeC vitelo,1]

In other words, C' contains the line segment between any two points in C.

6.3 Convex is Connected

Theorem 6.2

Any convex set C C RY is connected.

Proof. SFAC C € R¥ is not connected. Let {U,V} be a disconnection. Let x € CNU and let y € CN V.
Define

Up={teR:tz+(1—-t)yecU}
Voi={teR:tz+(1—-t)yeV}

we will show that {Uy, Vo } gives a disconnection for [0, 1].
Claim: Uy and V are open.
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Let to € Uy, so g = tox + (1 — to)y € U. Since U is open, there exists € > 0 such that
Bg(xo) Q U
For each t € R, we set 2z, := tz + (1 — t)y. Notice that

120 = @oll = [[tz + (1 = )y — (tox + (1 — to)y)]|
<[ = to)x|| + [(to = t)yll
= [t = tol lz[| + [t = Lol |ly]

Let § >0, 0 = =57, then if ¢ € (tg — 0,0 + 9), we get ||z, — zo|| < €, which suggests that
Zt € Bs(IEo) cU

This shows that (tg — d,ty + §) C Uy, and hence Uy is open. Similar argument could also show that Vj is

open. Then {Uy, Vj} is a disconnection for [0, 1] because

1. [07 1] C Uy U V.
If t € [0,1], z: =t + (1 — t)y € C because we know that C is convex, thus z; € U or 2z € V. So that
Zt € U U V

2. [0,1] N Uy # @ because 1 € Uy, and [0,1] NV # & because 0 € V.

3. [0,1]NUsNVp = 2.
Indeed, if t € [0,1]N Uy N Vp, then 2, € UNV NC (in C because C is convex). This cannot happen
because {U, V'} is a disconnection for C. Hence [0,1] N Uy NV = @.

Thus {U, V} is a disconnection for [0, 1]. Contradiction. O

Corollary 6.1

The following subsets of RV are connected:
1. RY
2. open balls
3. line segments

4. subspaces

6.4 Only R" and @ are Clopen
Corollary 6.2

The only clopen sets in RY are RY and @.

Proof. Exercise.
My Attempt:
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Suppose there exists U C RY with U # @ and U # RY such that U is clopen. Thus we can find that
V :=RN\U is also clopen. Notice that thus we have

1. RNCcUuv
2. UNRYN £z and VNRY £ o
3. RN NUNV =0

which implies that RY is disconnected. Contradiction. O

Lecture 10 - Monday, May 27

7 Sequence and Limits in RY

Definition 7.1: Sequence

A sequence in R" is a function f: N — RV,

Notation: we write z,, = f(n), and we write (x,), (£5)22, or (2, )nen for the sequence.

Definition 7.2: Limit

We say that a sequence (z,,) in RY converges to a € RY if for every £ > 0, there exists M € R such
that for all n > M

[ —all <€

or equivalently,
Ty € Be(a)

We call a the limit of (z,,) and say that (x,) is convergent.

Notation: we write a = lim,, o Tp, Or T,, — a.

Notice that (z,) converges to a if and only if for every open U C RY with a € U, there exists
My € N such that z, € U for all n > My.

Definition 7.3: Bounded

Let (z,,) be a sequence in RY, we say that (x,) is bounded if its set of terms {x, : n € N} is a
bounded set.
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7.1 Bounded if (Cauchy iff Convergent)

Definition 7.4: Cauchy

We say (z,) is Cauchy if for every ¢ > 0 there exists M € N such that

lTn — zml| <e for all n,m > M

If (x,,) is a sequence in RY then

(x,) is convergent <« (z,) is cauchy — (z,,) is bounded

Proposition 7.1
Let (z,,) be a sequence in RY, then
1. if (z,) is convergent, then it is cauchy;

2. if (x,,) is cauchy, then it is bounded.

Proof. 1. Suppose (z,,) is convergent and let a¢ := lim, oo x,. Let € > 0 and let M € N such that
|z — a]| < e/2 for all n > M. For m,n > M, we have

[2n — 2wl < llzn —all + [la — 2|
—8-1-8—5
=5+5=

thus the sequence (x,,) is cauchy.
2. Suppose (z,,) is cauchy. For e = 1, let M € N be such that ||z, — 2,,|| = 1 for all m,n > M, then
[enll = llon — 20 +2ar|l < ll2n — 2l + 2]l

Take R := max{|z1],||z2ll,---,llza=1ll,1 + [|xa]l}, then ||z,]] < R for all n € N, suggesting that
(25,) is bounded.

O

Proposition 7.2

A sequence (z,,) in RY can have at most one limit.

Proof. Suppose (x,,) is convergent. SFAC that a,b € RV, a # b with a = lim,, o, 7, = b. Since a # b, we
have |la — b|| # 0, and we set € = |ja — b|| /2. Then

Be(a) N B:(b) = @
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Let M, € N be such that x,, € B.(a) for all n > M,, and let M}, € N be such that x,, € B.(b) for all n > M,
then for n > M := max{M,, M}, we have

x € B(a)NB:(b) =2

which is a contradiction. O

8 Sequential Characterization of Compact Set

Proposition 8.1
Let S C RN and p € RY, then TFAE:
1. pe S’

2. There exists (x,,) € S with x,, # x,,, if n # m such that lim, . x, = p.
Proof. A2. O

Definition 8.1: Subsequence

A subsequence of a sequence (z,,) in RY is a sequence of the form (z,, )52, with

ng<ng <ng <---<ng<--:

Example 8.1

Consider the sequence in R3 such that

(e ().)

notice that it is not convergent, but it is bounded and has convergent subsequences. In particular, as

for an instance, the following subsequences are convergent:

ny =2k+1
nk:4k

Proposition 8.2
If (x,,) converges to a € RY, then every subsequence also converges to a.
Proof. Let a = lim,, 00 ,, and let (x,, ) be a subsequence. Let € > 0 and let M € N be such that

lzn —al <€ for all n > M
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Let ko € N be such that ng, > M. Then
k>ky = np>2ng,>M

and so ||zp, — al| < &, which implies that (z,,) converges to a. O

8.1 Compact and Sequential Compact (in Metric Space R")
Theorem 8.1
Let K C RN, TFAE:
1. K is compact;

2. Every sequence (x,) in K has a subsequence that converges to a point in K.

Proof. 1. (1) = (2)
Let (z,,) be a sequence in K, we need to consider two cases:

(a) Case 1: E := {x, :n € N} is finite.
Then there exists a € E such that the set {n € N : z,, = a} is infinite. We build a subsequence
(zn, ) of (x,) converging to a € K as following: We set

Ai={neN:z, =a}
then A; # @, and we set n; = minA;. Let
As={neN:n>ny,z, =a}
then A, # @, and we set ny = minAs. Proceeding with the argument inductively we obtain
nE<ng <---<np<---

such that x,, = a for all k. Thus (x,, ) definitely converges to a.

(b) Case 2: E :={x, : n € N} is infintie.
In this case, since K is compact, then by Theorem (5.2), F has a cluster point ¢ € K. Then
we build a subsequence (z,,) converging to a as following: For ¢; = 1, take z,, € B, (a); For
€2 = 1/2, take ny > ny and z,, € B.,(a). Continue with the argument inductively, then for

exr = 1/n, ng > ng—y with z,,, € B, (a).
Lecture 11 - Wednesday, May 29

2. (2)=(1)
SFAC K is not compact, then K is either not bounded or not closed.

(a) if K is not bounded
So for each n € N, we can find x,, € K with ||z,|| > n. The sequence (z,) has no bounded

subsequence, which is hence not convergent. Hence we conclude that K must be bounded.
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(b) if K is not closed
By the characterization of closed set 4.1, there exists p € K’ with p ¢ K. By A02-Q4, there
exists (), a sequence in K, converges to p. Then every subsequence also converge to p ¢ K by
Proposition 8.2, contradicting 2), so k must be clsoed.

O

Let (x,) be a bounded sequence in R, then (z,,) has a convergent subsequence.

Proof. Suppose (z,,) is bounded, say (x,) C Bg[0]. Since Bg[0] is closed and bounded, it is compact. Hence
x, has a convergent subsequence by Theorem 8.1. O

Proof. This is an alternative proof
Using BW 8.2 in R, since
Tn = (xn,la xn,Q; e axn,N)
For the first sequence, find a convergent subsequence (z,, 1), and take (z,,). Using this subsequence, at

the second coordinate find a convergent subsequence of (x,, ), denoted as (acnkj 2), to get (acnkj ). Continuing

this argument for each coordinate.

This proof is called the “Diagonal Argument”.

Every cauchy sequence in RY is convergent.

Proof. We know that by Proposition 7.1 every cauchy sequence is bounded. Let (z,) be a cauchy sequence
in RY. Tt follows by BW Theorem (8.2) in RY that (x,) has a convergent subsequence (,,). Let a =
limg 00 Tpn, . We will show that (z,,) converges to a. Let £ > 0 and let kg € N be such that ||z,, — al| < &/2
for all k > k. Let M € N be such that ||z, — x| < €/2 for all n,m > M. Let n > M, let k be such that
k > ko and ng, > M (e.g. k > max{ko, M}). Then

||xn - a” - ||xn — Ty, + Ty, — a’”
< llon = @, || + (|20, — al
- € + g .
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9 Limits of Function and Continuity

9.1 Limit

Let @ # D CRY and f: D — RM a function, given o € D', we wish to study the behaviour of f around

Zo-
Definition 9.1: Limit

Let @ # D C RN and f: D — RM a function, given zg € D’. We say that L € RM is the limit of
f as @ — xg, written L = lim,_,,, f(z), if for every € > 0, there exists ¢ > 0 such that if € D and
0 < ||z — xo]] <9, then ||f(z) — L|| < e.

If there is no L € RM such that the above happens, then we say that the limit of f at 2 does not

exist.

Theorem 9.1
Let @ # D C RN and f: D — RM a function, given o € D’. TFAE:
1. L =limy,_,y, f(x)
2. For every sequence (x,) in D\{zo} with z,, — z, the sequence (f(z,)) converges to L

3. For every neighbourhood U of L, there exists an open neighbourhood V' of xg such that

(VN D)\{zo} C f7H(U) :={z € D: f(z) € U}

Definition 9.2: Neighbourhood

U is a neighbourhood of z if there exists € > 0 such that B.(xo) C U.

Proof. 1. (1= 2)
Let (zy,) be a sequence in D\{zo} converging to z. Let € > 0 be given. Then there exists ¢ > 0 such
that if z € D, 0 < |Jx — zg]| < 0, then ||f(z) — L|| < e. Let M € N be such that ¢ € Bs(x) for all
n > M. Then | f(z,) — L| < e, giving that (f(z,)) converges to L.

2. (2=1)
SFAC L # lim,_,,, f(z), then there exists € > 0 such that for every § > 0, we can find x5 € D with
0 < ||xs — o]l < 0 such that
If(zs) — LIl > &

For 6 = 1, find 1 € Bi(xo)\{zo}, 1 € D with ||f(z1) = L|| > e. For 6 = 1/n, find =, € D,
T € Byp(2o)\{z0} With |[f(z,) — L|| > €. The corresponding sequence (z,) € D\{zo} converges to
Zo, but (f(z,)) does not converge to L. Contradiction.

Lecture 12 - Friday, May 31
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3. (1= 3)
Suppose (1) holds and let U be an open neighbourhood of L. Let € > 0 such that B.(L) C U. By
(1), there exists 6 > 0 such that if z € D and 0 < ||z — xg|| <, then || f(z) — L|| < €, which further
implies that f(x) € B.(L). Set V := Bs(xo), then

(VND)\{zo} € f7H(B:(L) ¢ f71(U)

4. 3=1)
Let € > 0. Set U := B.(L). By (3) we can find an open neighbourhood V' of xy such that

(VD)\{zo} C f7H(U)
Let 6 > 0 be such that Bs(xg) C V, then if z € Bs(xo) N D, © # xq, then
re(VND\{zy} = z¢c fHU)

O

Notice: If D C R, x approaches zg either from the left or from the right. In R, N > 2, there are

many different ways x can approach xg.
Example 9.1

Consider D = R2\{(0,0)}, f: D = R, f(z,y) = ay/(z* + y?) and x¢ = (0,0). Let (z,) in D\{zo},
x, = (1/n,1/n), then x, — (0,0) and f(x,) — 1/2. Take x,, = (1/m,1/m?), compute to find that
f(zm) — 0. We conclude that by the Sequential Characterization ((2) of 9.1) that the limit of f at z

does not exist.

Example 9.2

Let D =R2\{(0,0)}. Let f: D — R, f(z,y) = 2*/(2% + y?) and = = (0,0). We claim that

lim z,y) =0
(z,y)—>(070)f( )

Assume x # 0, then f(z,y) = % We have 1 + y?/x2 > 1, hence W < 1, giving that
flz,y) = % < 2. Thus given € > 0, take § = /g, thus if ||(z,y)|| < §, we have 2% < ¢.

9.2 Continuity
Definition 9.3: Continuous

Let D C RN, f: D — RM be a function. We say that f is continuous at zy € D if for every ¢ > 0
there exists 6 > 0 such that if z € D and || — xo|| < § we have || f(z) — f(xo)|| < e. We say that f is

continuous on D if f is continuous at every point zog € D.
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1. Continuity only makes sense at a point xg € D.

2. We say that a point xy € D is isolated if there exists 6 > 0 such that Bs(xo) N D = {x0} (e.g.
xo € D\D'). If zy € D is an isolated point, then every function f : D — R is continuous at x.

Theorem 9.2

Let f : D — RM be a function zop € D N D', then f is continuous at g if and only if lim, ., f(z) =

f (o).

9.3 Properties of Continuous Functions
Proposition 9.1

Let D C RN and let f,g: D — RM, ¢ : D — R. Suppose f,g and ¢ are continuous at zo € D, then

f+g:D—RM f-g:D—RM éf : D —RM
z = f(z) +g(z) z = f(z)-g(z) z = ¢(x) - f(2)

where the second is dot product and the third is scalar multiplication, are continuous.
Proof. Exercise. (Use, for example, f(x,) — f(zo) if and only if f(z,); = f(xo); for j=1,..., M). O

Proposition 9.2

Let f1: Dy = RE Dy CRY and fy : Dy — RE Dy CRM. Suppose f1(D;) C Ds. If f; is continuous
at xgp € Dy and fy is continuous at f(zo), then foo f1 : Dy — RM 2+ fo(fi(z)) is continuous at xg.

Proof. Let (z,) be a sequence in Dy converging to xg. We need to show that
lim (f2 0 fi)(wn) = f2(f1(20))
n—oo

Since f is continuous at zg, we have (f1(x,)) converges to fi1(zg). Because f is continuous at fi(zg) and
(f1(zn)) = fi(wo), we get
Jim fo(fi(2n)) = fo(f1(20))
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Lecture 13 - Monday, Jun 3

Proposition 9.3

Let f: D — RM D CRY, be a function. For each j =1,..., M, let f; : D — R be j** component of
f, so that
f(z) = (fi(z), fo(2), .., fu(2))

for all x € D. Then f is continuous at xg if and only if f; is continuous at ¢ for each j.
Proof. Exercise.

Example 9.3

For j € {1,...,N}, then the function 7; : RN — R, (x1,...,25) — x; (projectino onto the j
coordinate) is continuous. Then every function f : RN — R, f(a1,...,zy)aft -2V, n; >0, j =
1,..., N is continuous.

Example 9.4

The function f: R? —» R, f(x,y) =

continuous and fy =

2
Ty fo : . 2 — — 2 sq
e e continuous on R?. Indeed, f = f; - fo, for f1 = zy” is
7$2+;4+ﬂ is continuous. f is continuous because fa(x,y) = g2 0 g1 for gi(x,y) =

22 +y* + 7 CR\{0} and g5 : R\{0} — R, ¢ ~ 1/t are continuous.
Example 9.5

The function f :R? — R3

2 2
_ . ry " zy 4
flx,y) = (COb <x2 +y4+7r) ,sin <x2 +y4+7r> " y)

is continuous on R? since each composition f1, fa, f3 of f is continuous on R.

Global Properties of Continuity
Theorem 9.3
Let @ # D CRY, f: D — RM be a function, TFAE:
1. f is continuous on D;
2. For every U C RM open, there exists V' C RY open such that f~*(U) =V N D;

3. For every FF C RM closed, there exists G C RY closed such that f~}(F) =GN D.
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Proof. 1. (1) = (2)
Suppose f is continuous on D and let U C RM. We claim that for each # € f~1(U), there exists an
open neighbourhood V. of x such that

V.NnDC f~1(U)

Indeed, in case that x € D is an isolated point, let 6, > 0 be such that Bs (z) N D = {z}, set
Ve = Bs, (x). If © € DN D', then lim,_,, f(y) = f(z). By Theorem (9.1, (1) — (3)), there exists an
open neighbourhood V. of = such that

(Ve N D)\{z} € f7H(U)

and hence V, N D C f~1(U). Set V = 1y Vi, then V' is open in R and

zef~

fFfaye |y venbc i)
zef~1(U)

giving that f~4(U) =V N D.

2. (2) = (1)
Let o € D N D', we apply Theorem (9.1, (3) — (1)). Let U be an open neighborhood of f(z). We
know that there exists V' C RY open such that V. N D = f~1(U). Then V is open neighborhood of z
since z € f~1(U) and (V N D)\{z} C f~1(U). By Theorem (9.1, (3) — (1)), lim,— f(y) = f(z), and
so f is continuous at x.

3.(2) = (3
Suppose F' C RM is closed. Then F¢ is open. By assumption, there exists V' C R™ open such that

FUF)=vnD

Now we use that f~1(F¢) = f~}(F)°ND. Hence f~}(F)*N D = V N D. Taking complement and then
the intersection with D yields f~*(F) = V¢ D. Setting G := V¢ gives the result.

4. (3) = (2)
Follows a similar proof as above.

9.3.1 Example and Application

Example 9.6

Prove that the set F C R*,
F={(z,y,2z,w): e sin(zw?) € [0,2], 2% + w* + 2* — y* € [0,2024]}

is clsoed
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Proof. Let f:R* = R2:
f(z,y,z,w) = (" sin(zw?), 2* + w* + 2° — y*)

then f is continuous on R*, we have
F=f"YF) where F'=]0,2]x[0,2024]

It follows from the above Theorem (9.3, 1 — 3) that F is closed. O

9.4 Continuity and Compactness
Theorem 9.4

Let @ # K C RN be compact and f : K — RM be continuous on K, then f(K) is compact.

Proof. Let U = {U, }aca be an open cover of f(K). By Theorem (9.3) for each a € A, there exists V,, C RY
open such that V, N K = f~1(U,). Set V = {V,}aca, then

K= (fE) = £ (U Ua> - U o

aEA a€cA

:UVaﬁKg UVQ

a€A aEA

Hence V is an open cover for K. By compactness, V admists a finite subcover V' = {V,, : i = 1,...,1}.
Then

l
f(Kj::f (LJL@iﬁl(>

i=1

f(Va; N K)

|
CN

.
Il
—

Ua, N f(K)

I
(::&

1

.
Il

U,

N
-

i=1

Hence U = {U,, :i=1,...,1} is a finite subcover for f(K). O

Corollary 9.1

If o # K CRY is compact, f: K — R be continuous, then f(K) is is closed and bounded.

Proof. Theorem 5.6. O
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Lecture 14 - Wednesday, Jun 5

9.4.1 Extreme Value Theorem

Theorem 9.5: Extreme Value Theorems

Suppose @ # K C RY is compact and f : K — R is continuous, then there are Z,in, Tmaes € K such
that

f@min) = inf f(z) and  f(Zme) = sup f(x)

Proof. By Theorem (9.4) and Theorem (5.6), we know that f(K) is closed and bounded. In particular,
inf f(K) = infzex f(z) and sup,ep f(x) exist. Since f(K) is closed, we must have inf,cx € f(K) and
sup,cx € f(K). O

9.5 Uniform Continuity
Definition 9.4: Uniformly continuous

Let D C RN and f: D — RM be a function, we say that f is uniformly continuous if given £ > 0,
there exists § > 0 such that for all z,y € D satisfying ||z — y|| < d, we have ||f(x) — f(y)] < e.

Example 9.7

Let D = [—d,d] C R be closed and bounded. Let f : D — R be defined as f(z) = 2%. Then f is

uniformly continuous on D. (In fact, D only needs to be bounded.)

Proof. € > 0, we have for z,y € D,

[f (@) = f(W)] = |z + yllz —y]

hence we can easily take 6 = ¢/2d. O

Example 9.8

Let f:(0,1) — R defined as f(z) = 1/z, then f is not uniformly continuous on D = (0,1).

Proof. Take € = 1, given § > 0, let n € N be such that % < g. Set © = % and y = n%rl Now we have
[z —yl <4, but [f(z) - fly)|=1=>e. O
Example 9.9

The function = +— sin1/z (z > 0) is not uniformly continuous on (0, c0) because lim,_,¢sin 1/z does

not exist.
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Theorem 9.6

Let @ # K C RY be compact and f : K — R™ be continuous, then f is uniformly continuous on K.

Proof. SFAC that f is not. Then there exists £ > 0 such that for each d,, = 1/n, we can find z,,y, € K
such that

|20 — yull <6 [ f(zn) = flyn)ll = €
Since K is compact, by Theroem (8.1), (x,) has a subsequence (z,,) converging to a point € K. Notice
that
lim Ynie = lim (ynk — Tp, + xnk)
k—o0 k—o0
= lim (yn, — 2n,) + lim z,, =z
k—o0 k—ro0

—0

By continuity in Theorem (9.2),
fla) = lim f(zn,) = lm f(yn,)

then

k

which is a contradiction. O

9.6 Continuity and Connectedness

Theorem 9.7

Let @ # D C RY be connected and f : D — RM is continuous, then f(D) is connected.

Proof. SFAC {U,V'} is a disconnection for f(D). Since f is continuous, by Theorem (9.3), there are open
sets U and V C RY such that

fFUy=cnU and fY(V)=CnV
Then the pair {U, V} is a disconnection for D. Contradiction. O

9.6.1 Intermediate Value Theorem

Corollary 9.2: Intermediate Value Theorem

Let @ # D C RY be connected, f : D — R be continuous. Then f(D) is an interval. In particular, if
x1,x2 € D such that f(z1) < ¢ < f(z2) for some ¢ € R, then there exists d € D such that f(d) = c.
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10 Differentiability on RY

We wish to introduce a notion of differentiability for functions f : D — RM, D C R¥ open extending the

corresponding notion for real-valued functions in one variable.
Recall: If f: (a,b) — R and x¢ € (a,b) then we say f is differentiable at xq if

f(zo+h) = f(zo)

i
70 h
exists, and the derivative at xg is
. +h) — f(zo)
! — 1 f(l:() .
f(wo) = iy h

The derivative f/(z¢) gives us information such as:
e the minimum and maximum of the function,
o if the function is increasing or decreasing,
o and if f'(zg) exists then f is continuous at x.
The geometric intuition for a derivative is:

y
T y=f(z)

Al f(xo) + f'(wo)(x — x0)

Here, f'(xo) is the slope of the line tangent to the graph of f at (zo, f(z0)).
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Lecture 15 - Friday, Jun 7

Definition 10.1: Differentiable

Let @ # D C RY be an open set, f : D — RM be a function. We say f is differentiable at 2y € D if

there exists a linear transformation 7 : RN — RM such that

o WG+ 1) = () = T(B)|
o I

=0

1. The numerator we have is a norm of a vector in RM | and the denominator is a norm of a vector
in RN

2. The linear transformation 7' : RY — RM is a nice approximation for f(zg + h) — f(zo). In
particular, T'(0) = f(zo + 0) — f(xo) = 0. Additionally, not only

lli_r)r%)(f(xo +h) = f(zo) =T(h)) =0
but al
L o h) — o) T
h—0 171

10.1 Uniqueness of Derivative

Let @ # D CRY, f: D — RM be a function. Suppose Ay, Ay : RV — RM are linear transformations

such that
I Il f(zo+h) — f(zo) — Ai(R)]|
im
h—0 17l

=0 fori=1,2

then A1 = AQ.

Proof. For h with zg + h € D we have
[A1h — Axh|| < [[Ash = [f (2o + h) — f(@o)][| + [[[f (zo + k) — f(zo)] — A2h]

Hence we have
. [|[Arh — Ashl| B
im ——— =

0
h—0 IRl

Fix h€e RV, h #0, and t € R, t > 0. By linearity, we have

[A1(th) — As(th)|| _ [[Arh — Ashl]

[¢h] - il
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Taking the limit of ¢ — 0, we can get that

|Ash = Ashll _ . [[Ai(th) — As(th)]|

=0
2] =0 [th]

which suggests that A;(h) = Aa(h). O

Definition 10.2: Differential

If f is differentiable at 2y € D, we call the (unique) linear transformation T': RN — RM satisfying
Definition (10.1) the differential of f at x9. We denote it by (Df)(zo), also (Df)., or f'(xo). Thus
Df(zo) : RY — RM is a linear transformation. We say that f is differentiable in D if f is differentiable
at all z € D.

f(xzo+h) = f(xo) + Df(x) - h + Error(h)

here
N - ||Exror(h)|
L 0
h—0 [|172]]
Recall from Linear Algebra. Let {e1,ea,...,ex} and {uy,ua, ..., up} be the standard basis for RY

and RM respectively. A linear transformation 7' : RN — RM is determined by a matrix A € My n(R),
A = (wj), where

| | |
A = T(el) T(EQ) e T(GN)

so that if we regard v € RY as a column vector, we have

U1

vy
Tv=Av=A

UN

7T :RY - RMand S: RM — RX and A € M,,x,(R) represents T and B € M,,(R) represents S. Then
STv = BAv for all v.€ RV, That is, the matrix BA represents the linear transformation ST : RV — R¥.
We have

1T} = e [Tv]| <oo and |Tv| < |T]|v]

holds for every vector v € RY.
Example 10.1

Consider N =2, M =1 and let D C R? open, f: D — R. Suppose that f is differentiable at 2y € D.
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Then (Df)(xo) is determined by (a,b) € M1 2(R) for a,b € R:

hao
J(zo+ (hi,ha)) = f(zo) + ahy + bhy

equation of a plane in R3

f(xo + (hi, ho)) = f(zg) + (a b) <h1)

The graph of f is a surface in R3. Near the point (g, f(0)), the graph of f is approximated by the
tangent plane at (zq, f(xo)).

Lecture 16 - Monday, Jun 10
Recall that if T : RN — RM is a linear transformation, then
17| == sup{||T]| : [Jv]| <1} < o0
Moreover,
1. ||IT|| = 0 if and only if T' = 0;
2. ||aT| = |l |17
3T+ S =TI+ [1S1-

It follows that for all h € R,
TR < TR

because T is linear and if ﬁ has norm 1, then

h
HT () H <ITI = 1T < TR
Now we have the following theorem:
Theorem 10.2

Let @ # D C RN be open, f: D — RM be differentiable at 2y € D, then f is continuous at zg.

Proof. By the definition of differentiability (10.1), we have

i 1 @0 + 1) = f(a) = (Do) ()]

=0
h—0 Al

Hence we have that
lim [|f(z0 + h) = f(z0) = (Df)(zo)(R)]| = 0

Then

0 <[[f(xzo+h)— f(xo)ll
< |[[f(zo +h) = f(zo) — (Df)(zo) (M) + [[(Df)(xo)(R)|l
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Taking the limit as h — 0 and using that (D f)(z¢) is continuous (because it is linear) yields that
lim [ f(zo + h) = f(zo)[| = 0
h—0

which suggests that f is continuous at zg.

Example 10.2: What is the differential of a linear tranformation 7 : RY — RM

Suppose N = M =1, T(x) = ax for some o € R for all x € R. Then 7"(x) = T is linear transformation
on R for every x € R. In general for T : RV — RM we have for all h € RY and zy € RY, we have

T(xog+h)—T(xg) —T(h)=0

In particular, (DT)(zo) = T.

Example 10.3

Let f : RY O D — RM be a function and write f = (f1, fa,..., fa), where f; : D — R for all
j=1,2,...,M. A linear transformation T : RY — RM is determined by the vector

v:i="T(1)

Then T is the differential of f at xg € D if and only if

o 1o+ ) — o)~ o]

0
h—0 Al

It follows that f is differentiable at z( if and only if each component f; is, in which case

determined by the derivative of its components.

10.2 Chain Rule
Theorem 10.3: Chain Rule

Suppose @ # D C RN isopen. If f: D - RM (D) CV,V CRM isopen, g: V — RE. If f is
differentiable at xg € D, g is differentiable at f(xg), then g o f is differentiable at xy and

D(g o f)(xo) = (Dg)(f(x0))(Df) (o)
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Note: On the right hand side, we have the product of linear transformation RY — RM™ and RM — R¥.
On the left hand side we have a function RY — RX.

Proof. Let us write yo = f(xo),

A= (Df)(xzo) and B = (Dg)(f(x0))

we wish h h
e wish to show that g + 1)~ g(fGan)) — BAW]

=0
h—0 12l

We have for h € RY such that f(zo + h) is defined,

g(f(zo +h)) — g(f(x0)) — BA(h) = g(yo + k) — g(yo) — BA(h)

where k = f(zo + h) — f(x0). Since B = (Dg)(yo), given £ > 0, there exists d; > 0 such that g(yo + &) is
defined and

l9(yo + &) = g(yo) — B(E')|| < e [|¥]

whenever ||k’|| < ;. Since f is continuous at x(, we can find o > 0 such that of h € RY and ||h|| < &2, then
f(xo + h) is defined and
Bl = 11f (zo + h) = f(zo) || < b1

Because A = (Df)(xg), we can find d3 > 0 such that f(zo + h) is defined and
I = A < " |||
where &’ = min{”%‘l,s}. Take 6 = min{da, d3}, if ||| < 4, then
[1B(k = AR)I| < [IB[ Ik — A(R)[| < e |A]

We also have
Ikl < [lk — AR+ AR || < el[Rl] + [[A[ || (1)

and ||k|| < d1. So we have

l9(yo + k) — g(yo) = BA(R)|| < [lg(yo + k) — g(yo) — B(k)[| + |1B(k) — BA(h)|| < el[k] + ||l

Then
lg(yo + k) — g(yo) — BAR)|| _ e[|k
< + e
Al IRl
e(e[[Rll + [[Al A1)
+ €
Al
=&+ (1+ || Al)e by (1)
This shows that
o oo + 1) = gwo) = BAM| _

h—0 12l
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Lecture 17 - Wednesday, Jun 12

10.3 Partial Derivative

Recall that {ey,...,en} and {uy,...,ups} denote the standard basis of RY and RM respectively. For
f:D—=RM g£DCRN f=(f,...,fu) where f; : D — R is the j'" component of f.

Definition 10.3: Partial Derivative
Foreach 1 <i< N and 1 < j < M, we define for ¢ € D,

0fi(xo) _ . filwo +tei) = fi(zo)

ox; t—0 t

provided that the limit exists. afé'—g(f(’) is the derivative of f; at x¢ in the x; direction, and it is called

partial derivative of f at x.
Further notation: (D;f;)(xo). If M =1, we have %ﬁi‘)), or (D; f)(xo).

It may happen that all partial derivative of f at x( exist, but f is not contimuous at xo. But if f is
differentiable at ¢, then its partial derivatives determine (D f)(xg).

10.3.1 Geometrix Interpretation

G&om A=V ?th:‘erﬁ}t,—cq_,—af 9

—— -

4 = £ y)
L 1)
%3—"1 1S —I'I/}(_’
Slap &-6- ~_
ey nennt \ine-To
| @)Q\\. 3% f—c't
o W.ja‘_ G(X"ﬂb)/‘ \\

Rk q- ATl

>

Algorithm 10.1: How do we calculate partial derivative?

We treat the variables x4, ...,2;—-1,%;4+1,...,ZN as constants.
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Example 10.4
Let f:R? = R, f(z,y) = ® + x cos(xy), then

g(fc,y) = —x” cos(zy)

of e B
Dy %(x, y) = €” + cos(zy) — xy cos(zy)

Example 10.5: This is related to discovery (10.2)
Ly (o) £ 0,0)

0 otherwise
(2,9) # (0,0); If (z,y) = (0,0), we have

Let f: R? = R, f(z,y) = The partial derivatives of f at (x,y) exist if

OF0.0) L0~ £0.0) __ 07(0.0)
dr =0 t Oy

The partial derivatives of f exist at every point, but f is not continuous at (0, 0).

Recall if T : RV — RM | then the matrix of T with respect to the standard basis is given by

| | |
T(er) T(ea) --- T(en)| = (aji)ji
| | |

where T'(e;) = Z;Vil ajit;.
Theorem 10.4

Let @ # D C RN be open and f : D — RM be differentiable at xg € D, then all the partial derivatives
aféig(f“) of f at xg exist and

M
(Df)(xo)(e:) = > aféif()) (u;)

j=1

As a consequence, the matrix of (Df)(xg) with respect to the standard basis is given by

9 f1(zo0) Ofi(zo) ... Ofi(zo0)
611 amz 81]\]
1¢) ..
e _ <8fj <xo>)
: - Oz g
Ofm(zo0) 9fm(xo)
811 ail)N

Proof. We know that

o 10+ t00) = f(a) = (DF)(wo) 11|

=0
t—0 |t|

Using linearity of (Df)(xg), the above yields

lim f(xo +te;) — f(xo)
t—0 t

= (Df)(xo)(es)
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This implies that wé'iffo) exists for all j =1,..., M and

M
(D) an)(eo) = (2], OTutn)) 5 2Ll

Definition 10.4: Jacobian Matrix

The matrix [Wéigo)} ~ is called the Jacobian Matrix of f at zp and denoted by Jy(zo).

J)t

Example 10.6

Let v : (a,b) — D for @ # D C R¥ is open, suppose v is differentiable in (a,b). Let f : D — R be
differentiable in D. Combining the chain rule (10.3) with the above theorem, we obtain that g = f o~

is differentiable in (a,b) and

gt) = (fo)(t)

N
6‘f(v(t)),,_8f(v(t))} : :Zaf(v(t)) ')

oxq ox N

Definition 10.5: Gradient Notation

Let f: D — R for D C RY open, f differentiable at x¢ € D, then (Df)(zo) is a M1 y(R), (Df)(x0) =

(%, . %) is called the gradient of f at xo and denoted as V f(xg). Notice that if f: D — RM,
then
V fi(zo)
(Df)(wo) = :
V far(20)

Lecture 18 - Friday, Jun 14

Definition 10.6: Directional Derivative

Let @ # D C RN be open, f: D — RM be a function. Let 29 € D and v € RY a unit (i.e, [[v| = 1).

The directional derivative of f in the direction of v at xg is given by

f(zo + tv) — f(z0)
t

(D, f)(z0) = lim

provided that the limit exists.
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If v = e;, then (D, f)(z0) = 2L () is the partial derivative.

Bzi

Let @ # D C RN be open, f : D — R be a function differentiable at xy € D. Then the directional
derivative of f at z exists for every unit vector v € R, and

(Do f)(x0) = Vf(w0) - v

Proof. Consider the function v : R — R™, 4(t) = 29 + tv. Then 7 is differentiable in R and +/(¢) = v for all
t € R. We have 7(0) = xg. Since D is open, we can find 6 > 0 such that

~(t) € D for all t € (=4, 9)

Now

. f(zo +tv) — f(z0)
(Dyf) (o) = limy ===

— iy o) = (f07)(0)

t—0 t

= (fo)(0)

Example (10.6) yields
(f 07)'(0) = V£ (7(0)) - +'(0) = V f(0) - v

which is desired. O

This allows for a geometric interpretation of the gradient vector. By Cauchy-Schwartz

(D f) (o)l = IV (o) - vll < IV f (o)l ]l = [IV £ (o)l

v
If v = %, then |lv]| =1 and

(Do f)(@o) = [[V.f (o)l

So the gradient of f at xg points in the direction to which the slope of the tangent line to the graph of

f at (zq, f(zo)) is maximal.
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Example 10.7: Existence of directional derivative does not imply continuity

_ ) 1 0<y<a?
Consider f: R* - R, f(z,y) = ;
0 otherwise

f=1 We have (D, f)(0,0) = 0 for all unit vectors
v € R% but f is not continuous at (0, 0).

F=0

Recall Mean Value Theorem.
Exercise: See more at HWS. f: RN — RM is differentiable at 29 € D if and only if the j** component of
£ fi= RY — R is differentiable at zo for all j =1,..., M.

Theorem 10.6: Sufficient Condition for Differentiability

Let @ # D C RY be open, f: D — RM x5 € D. Suppose that all partial derivatives of f, , exist

in D and are continuous at zg. Then f is differentiable at xg.

Proof. We can assume M = 1. We know f is differentiable at x( if and only if

o 1 @0+ B) = f(a) = V(o) - b

h—0 h =0

Let € > 0 be given. Since each % is continuous at xg, there exists § > 0 such that if |z — x¢| < J, then
z € D and

of(z)  Of(zo)

Fix h € RY with ||| < § and write h = (hi,...,hy). Foreach k =1,... N, set

=1

— Y
N ) )

k
Vi :Zhiei = (hl,...,hk,...,ON,k)

We also set vg = 0. Now v, = vp—1 + hgeg for k=1,..., N and |Jvg]| < d for all k =0,...,N. Now

N
Fo +h) = f(z0) = fo+vk-1) + flxo +ve—1) = »_ f(@o + ve) — f(xo + ve-1)
k=1
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Fix k = 1, we have g + v, xo + vk—1 C Bs(zo). Since Bs(zg) is convec, it follows that
t(xo+vr) + (1 —t) (g + vp—1) € Bs(xo) Vtelo,1]

For all t € [0, 1],
xo + vg—1 + threr € Bs(zo)

Hence the function
t— f(fE() + V-1 + thkek)

is continuous on [0, 1] and differentiable in (0,1) because a‘% exists in D. Set g; : [0,1] — R, gx(t) =

f(zo+vi—_1+thger), we have gi(1) = f(xo+vx) and gx(0) = f(xo+vk—1). By Mean Value Theorem, there
exists ¢ € (0,1) such that

0
hkaimi(l'o + Vp—1+ Ckhkek) = gk(ck> = f(-TO + Uk) _ f(-TO + Uk—l)
Thus
0
fzo+vr) — f(xo +ve—1) — whk
T,
0 0
:hkaiai(xo + vg—1 + crhieg) — %io)hk
and
0
‘f(l“o +vk) — f(wo +vk—1) — Jg(xo)hk‘
),
0 0 € €
= hkaTjk(xo + vk—1 + crhger) — g:ko)hk‘ < hyg- N <||h]| - N
8f(ﬂfo)
—|hk| (550 + vp—1 + crhier) — o2
now we have
f('rO + h) - f(xO) - kN 1 ag;:)) ) ‘Ek 1 ( o + ’Uk) - f(l‘o + Uk—l) - Lg;io)hk)‘
(IRl Al

N
5 Il - e
2 n]-N

Lecture 19 - Monday, Jun 17

Example 10.8
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24 .2\ 1
Let f:R? = R, f(z,y) = (z" +y7)sin (V””z*yz) (=.9) # (070). If (x,y) # (0,0), we have

0 otherwise

af(xay> — 9rsin 1 1,2 2 cos 1 71 ; x
e =2 < Fz—ky2> JF( +y) (m) < 2> (x2+y2)3/2(2 )

1 x 1
— 9 i _ .
o ) e )

At (0,0), we have

d£(0,0) _ |7, o) |* sin (T\(h‘fhz)n)

= lim
o (h1,h2)—(0,0) [[(h1, ho)l
1
= lim ||(I’L17 h2)|| sin () =0

" (h1,h2)—(0,0) | (R, ho)]|

by squeeze theorem. This suggests that % is continuous at every point (x,y) € R?\{(0,0)}, but it is
not continuous at (0,0) because, for example,
o L7 0
lim 0 (57.0) =—1#0=

n—soo Ox

af(0,0)
Ox

By Theorem (10.6), f is differentiable at every point (x,y) # (0,0). However, f is also differentiable

at (0,0):
0£(0,0) = lim 1(t,0) ~ 1(0,0) = lim ¢ sin (1> =0
O 150 t t—0 t

Now we compute
lim |f(h1ah2)_f(070) _O(hlah&)‘ -0

(h1,h2)=(0,0) [(h1, ha)l

which suggests that f is differentiable at (0,0).

10.4 Product Rule + Linearity
Proposition 10.1

Suppose @ # D C RV is open, f,g: D — RM are differentiable at xo € D, then
MAg:D—=RY  (Af+g)(x) = A(2) + g()
is differentiable at z( for all A € R, and

(DAf + 9)) (o) = MDf)(w0) + (Dg) (o)

Proof. Exercise.
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Proposition 10.2: Product Rule

Suppose @ # D C R¥ is open, f,g: D — RM be functions. If f and g are differentiable at zq € D,
then
frg :D=>R  xw f(z) g()

~~ —
dot product dot product

is differentiable at zo, and

(D(f - 9))(w0) = f(z0)" (Dg)(x0) + g(zo)" (D f)(x0)

In case of M = 1, this gives
V(f-9)=f-Vg+g-Vf

Proof. We writev = f-g= Z]Ail fj - g;. If v is differentiable at x, then (Dv)(zo) = (@ Qv o Qv )

6301 ? 612 ? ’ BzN
Write
5':E 3x (Z fjg])

and this is exactly the " column of (Dv)(xq), so it suffices to show that v is differentiable at z9. We have

af, g
_Z(ai j*ai'”)

Jj=1

v(xo + h) = v(wo) — (f(20)" (Dg)(x0) + g(xo) (D f)(x0)h)

= (f-9)(zo+h)—(f9)(xo) — f(x0) - g(xo + h) + f(z0) - g(x0 + h)
—g(xo + h)"(Df)(wo)h + g(xo + )T (D f)(wo)h
—f(x0)" (Dg)(x0) — g(x0)" (D f)(wo)h

= 81+ 82+ 83

\_/,—\

where

= (f-9)(@wo+h) — f(wo) - g(wo + h) — g(zo + h)" (D f)(wo)
s2 = f(z0)g(xo + h) — f(z0)g(w0) — f(w0)" (Dg)(0)h
s3 = (g(zo + h) — g(z0))" (Df)(z0)h

Then by Cauchy-Schwartz (1.1), we have

1]y UL )= )= D,
||ShQ|| <1If (o) - lg(xo + 1) gﬁo) — (Dg)(@o)hll
< gt + ) — gan)] - LEDI0]
< lg(eo + ) — gfao)] - (D) (xo)h]
Since g is continuous at 0, each summation goes to 0 as k — 0. 0
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10.5 Higher Order Partial Derivatives

Suppose @ # D C RN open and f: D — R,

Definition 10.7: Second Order Partial Derivative

If; € {1,..., N} is such that 36_3{1‘ exists in D, then g—i is a function on D. If the partial derivatives of
% exist, we define for j =1,..., N,

of _ 0 (of
63:]»6@ - aCL'j 8@

is called the second order partial derivative of f.

Definition 10.8

We say that f € C°(D) if f is continuous on D, f € CY(D) if f € C°(D) and the partial derivatives
of f exist in D and are continuous. If f € C1(D), then f is continuously differentiable. In general,

. _ ok .
feCkD)if feC* (D) and all ﬁ are in C°(D).

Example 10.9

Suppose f(z,y) = %, (x #0). then

fwy = yeacy
fyz = yezy
fyy = we™?

Notice that f,, = fyz. In fact, partial derivatives are commutative. (See more in 10.8)
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o f of

Let @ # D C RN, N > 3. Suppose i,j € {1,...,N}, i < j, and 2L, ;&L Ol 4]l exist at
(2 7 J J (2
2o = (ay,...,ay). We consider g : R? D U — R defined by

g(xvy) :f(alw"aai—lyxiya’i-‘rla'-'7a’j—1ayj7aj+1a"'aaN)
Then we have
dg(x,y) _ Of o o
Oz - 8‘/13‘(0’17"‘70’7,717:5270‘7/“1’17"'?ajflvy']?a’]“rl?’"7aN)
K3

This will allow us to assume N = 2 in the next theorem.

Let @ # D C R? be open, f : D — R a function on D. Suppose %, (%zgz exist in D. Let (a,b) € D,
and let @ be a closed interval contained in D with opposite vertices (a,b) and (a + h,b + k). Then
there exists an interior point of @, denoted as (z,y), such that

P f(z,y)
Oyox

A(f,Q) = hk

where A(f,Q) = f(a+h,b+k)— f(a+h,b) — f(a,b+ k) + f(a,b).

Proof. Let v(t) := f(t,b+ k) — f(t,b) for t € [a,a + h] (or [a + h,a]). Then v is differentiable in the open
interval and continuous in the closed interval. By MVT, we can find x between a and a + h such that

v(ath) —v(a) _ A(f.Q)
h

V'(t) = 5

We know that
of(@,b+k) Of(x,b)

Ox dr vi(z)

Now, the function s % is continuous on the interval [b,b+ k| (or [b+ k, b]) and is differentiable in the
2
open interval because 6873% exists in D. By MVT again, we can find y between b and b + k such that

Of (xz,b+k of(x,b
82f(x,y)_ flz,b+k) fé )

_ ox x

Oyox k

Replacing the above equation with the second one, we obtain

() _ AUQ)
Oyox hk

as desired. O

54



Lecture 21 - Friday, Jun 21

10.5.1 Partial Derivatives are Commutative

Theorem 10.8: Partial Derivatives are Commutative

Let @ # D € R? be open, f : F — R. Suppose that of 91 and % all exist in D and that 24 i

. Dz’ Oy’ oyox 18
continuous at (a,b) € D. Then ;Tafy exists at (a,b) and

9% f(a,b) B 0%f(a,b)

oydx  Oxdy
Proof. Set A := %, we need to show that
lim (fy(a+ hvb) — fy(a7b) o A> =0
h—0 h

Let € > 0, let 0’ > 0 be such that if By ((a,b)) C D and if (z,y) € Bs((a,b)), then

|f.Ly('r)y) - A| <eg

Let € > 0 such that
[a—6d,a+ 8] x[b—380b+ 5] C Bs((a,b))

Take h, k # 0 with |kl |k| < J, then the closed rectangle @ with opposite vertices (a,b) and (a + h,b+ k) is
contained in By ((a,b)). Apply Theorem (10.7), there exists (z,y) € D° such that

62
A(£.Q) = by (1)
Then AG.Q)
’ hl’c — A’ <e
Thus

‘f(am,bm)f(a+h,b)f(a,b+k)+f(a7b) _A’ -
hk

Take limit as kK — 0, we get
fy(a + h, b) — fy(a7 b)
h

since 0 # h € D, |h| < §. This shows that fy,(a,b) exists and

—A‘<5

fyrc(a’a b) = fmy(aa b)
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Corollary 10.1: Clairaut’s Theorem
Let @ # D € R? be open, f: F — R in C?(D). Then

0% f 0 f .
8l‘i6$j 8%6331 VisijsN

Proof. This follows Theorem (10.8) and Discovery (10.5).

11 Vector Fields
Definition 11.1: Vector Field

A vector field is simply a function v : RV > D — RN,

Example 11.1: Important Example

Suppose f: D — R is differentiable, then

Vf:D—RY, xGDr—><af(x) 3f(x)>

81‘1 LR 8a:N

is a vector field called the gradient field.

Proposition 11.1

Suppose that v : D — R for D open is a vector field of class 1 (in C*(D)). Then a necassary condition
for v to be a gradient field is that

8vj - 8’Ui
Gxi N 8.%‘j

V1<i,j<N

Proof. Suppose v = V£, then f must necessarily be class C2. Then by Clairaut’s Theorem (10.1),

ov; 0 <af) orf  Of o

(9JUZ‘ n 8.131 8733] - 8$16$J B 63@8@ - 8a;j
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11.1 Other Operations on a Vector Field

Definition 11.2: Divergence

Suppose v : D — R is a differentiable vector field, then the divergence of v is

div(v E (;)Uz:
L
= i7...,i '(’l}l,...7’l}N)
81‘1 al‘N

Remark: the div corresponds to taking the trace of the Jacobian of v

Definition 11.3: Laplace Operator

If f: D — R is of class C?, the Laplace Operator is

L

N
Af =div gradf :Z

Vf

Q)
~m

Definition 11.4: Harmonic

A function f: D — R is said to be Harmonic if Af =0

The Laplace operator appears in many partial differential equation

Example 11.2: Heat Equation and Wave Equation
Let D CRY, f: D x(0,00) = R, f(z,t) for x € D and t € (0,00) (think of this as “time”). The heat

equation is

of

— =kA

ot /
The wave equation is

0*f

= kA
o2 /
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11.2 Derivative as Linear Approximation

Suppose N = 1. Recall that f/(zq) is the derivative of f at xg, and

f(x) = f(xo) + f'(w0)(x — 20) + Rey(h),

for some error function R, (h), where h = x — x¢ and limy_,o R”‘+(h) =0.Iff:D—-R,DCRN N >2and
f is differentiable at xg, then

f(@) = f(xo) + (Df)(xo)(x — o) + Ruy (h)

where h = ¢ — zg and limy,_,q ”Rﬁ%hh)” = 0. The function L : RY — R,

L(z) = f(x0) + (Df)(wo)(x — x0)

is the linear approximation of f at xg. If N = 2, then for (x¢,y0) € D,

L(z) = f(x0,y0) + Vf(x0,0) - (x — 0,y — Yo)
= f(w0,y0) + fe(wo,y0)(® — x0) + f (0, Y0) (¥ — ¥o)

is the tangent plane to the graph of f.

Lecture 22 - Monday, Jun 24

12 Taylor’s Theorem

12.1 Single Variable Taylor’s Theorem
We wish to prove a version of Taylor’s Theorem for functions of several variables.
Theorem 12.1: Taylor’s Theorem (one variable case)

Let n > 1 and let f : (a,b) — R be n-times differentiable in (a,b). Let z¢ € (a,b), then for each
x € (a,b), © # xg, there exists £ lying between z¢ and x such that

nl o) (g (n)
f(x):Zf ( 0)(.1‘—1'0)k—|—f n(g)(x_xo)n

k! !
k=0

Proof. We let x # xg, we prove by induction on n:

1. Base Case:
When n = 1, the statement is the MVT.

2. Induction Step:

Suppose n > 2 and write




for t € R. Set
f(z) = p(=)

(x — x0)™
such that f(z) = p(x) + M(x — z9)". We need to show that M = f(")(s)/n! for some s between z
and z. Or equivalently, f((s) = n!M. Consider g(t) = f(t) — p(t) — M(t — x0)™, then g(z¢) = 0.
Moreover, for k =1,...,n — 1, we have

M =

g (wo) = F® (o) — p(k)(xo) =0
because p*) (o) = f*)(zq) for k=1,...,n — 1. Now
g () = £ (1) — niM

So we need to find & between zy and = such that ¢(™ (¢) = 0. Since g(z) = 0 by our choice of M,
by MVT, there exists x; between z¢ and x such that ¢'(z1) = 0. Since ¢'(z¢) = 0 and ¢'(z1) = 0,
again, by MVT, there exists x5 lying between xy and z; such that ¢g”(z2) = 0. Continuing with this
process, after n — 1 steps we obtain a point x,,_1 between xy and = such that g(”_l)(xn,l) = 0. Since
g™V (z9) = 0, we apply MVT again and get x,, lying between xq and x,,_; such that ¢(™(z,) = 0.
Setting ¢ := x,,, we get

G

n

Corollary 12.1: Second Derivative Test

Let f € C?%((a,b)). Let o € (a,b) be such that f’'(xg) = 0. Then
1. if f”(z0) < 0, then zg is a local maximum of f;
2. if f"(xzo) > 0, then zy is a local minimum of f;

Proof. Since f” is continuous, then there exists 6 > 0 such that (z—4§,z+9) C (a,b) and f”(z) < 0 whenever
|z — zo| < 0. Now let x with |z — x| < J. By Taylor’s Theorem, there exists & between zy and = such that

f"(€)

f(@) = f(wo) + f'(w0)(x — @0) + T(x — x9)?
= f(xo) + fT(g)(x —20)?
Since f”(£) < 0, we get f(x) < f(xo), which implies that f(z) is a local maximum. O
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12.2 Multivariable Taylor’s Theorem

Definition 12.1: Notation: Multiindex

For n > 0, we let @ = (v, ...,ay) € N) (including 0) with oy +--- 4+ ay = N. For a € N}, we write
¥ =xtag? )
for x = (x1,...,2x5) € RYN. we define
o] :==a1+--4+ay and al:=aq!---ay!

For a € N)Y a multiindex, we write

« 6‘a|f ||
Df:m for fe O |a| <n
N
Example 12.1

For an example, we have
f of
D(1,2,1) _ d D(O,I,O) _ ZJ
! 01022013 an Oxy

Let (I3,l2,...,1,) be an n-tuple in {1,2,...,N}". For each k =1,..., N, we let o be the number
of times k appears in (I1,...,0,). Then a = (aq,...,ay) is a multiindex with oy + -+ + ay =n. If f is of
class C™, it follows from Clairaut’s Theorem that

a’ﬂ
(91‘1‘1 s &vin
If « = (a1,...,an) be a multiindex of oy + -+ + ay = n, there are exactly Z—: n-tuples whose associated

multiindex as above is «. This follows from the multinomial theorem:

n!
(@t Fay) = Y —a®

a1+t an=n

Lecture 23 - Wednesday, Jun 26

Theorem 12.2: Taylor’s Theorem (N-variable)

Let @ # D CRY beopen, f: D — R, f € C"(D) for n > 1. Let 29 € D and let ¢ € R be such that
xo+t€ € D for all t € [0,1] (line segment between zy and xg + ). Then there exists 6 € (0,1) such

that Do +0§)
X
faoro= 32 Do) o, > e

lal<n—1 laj=n
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Example 12.2

Suppose n = 1, then

N
F(wo+ ) = flao) + 30 LEEE 6~ rag) 4+ 95w+ 06) -

See more in A3.

Example 12.3

Suppose n =2 and N = 2, then

Flao +€) = f(xo) + V(o) - € + fm(fo;r LIS fyy(xo; 0)€3

= (o) + Vf (o) - €+ 5(Alzo + 66)€) €

+ fwy(xo + 95) : 6152

where

N fmx(xO"‘eg) fary($0+9£)
Alwo +86) = fyz(o +08)  fyy(x0 + 6¢)

Before proving the Theorem, we first introduce a Lemma:
Lemma 12.1

Let @ # D C RN beopen, f: D — R, f € C*(D) for n > 1. Let 29 € D and let ¢ € RY be such
that xg +t€ € D for all t € [0,1]. Then there exists an open interval (a,b) containing [0, 1] such that
g:(a,b) >R, g(t) = f(xog + t£) is in C"(a,b) and

|
gt = D D flwo+t6) €

loe|=n

Proof. The existence of (a,b) D [0,1] with zg + t£ € D follows because F' is open and xg + t§ € D for all
t € [0,1]. Let us first prove by induction on n that

N

871,
0= 3 GRS g,
- i1 in

B15meyln

n

which is the sum over all n-tuples in {1,2,..., N}
1. For n = 0, there is nothing to prove.
2. For n =1, since g = f oy, for v: (a,b) = RY, y(a,b) C D, and v(t) = x¢ + t£, the Chain Rule (10.3)

implies that g is differentiable at ¢t € (a,b) and

N
gt)=Vf(wg+1tf)- €= ZW&
i=1

L
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3. Now suppose n > 2 and

N
_ o~ 1f($0 + tf)
(n—1) —
g (t) Z axll . ax1n,_1 E gln 1

i1eeytn—1=1

Then again by the Chain Rule (10.3), g*~ 1 is differentiable at t € (a,b) and

N n—1
g™ () Z (Wg N 1)

ox;,

015eeyin—1= 1

N

_ Z 0" f(xo + t€)

mg gln

i1,eeyin—1=1

By Clairaut’s Theorem (10.1), since there are exactly Z—: n-tuples whose associated multiindex is

a = (ag,...,ay), we have

g™t Z Da flaxo + L&) - €~

|a|_n

Proof. This is the prove of N-varaible Taylor’s Theorem (12.2). We need to find 6 € (0,1) such that
o D* f (z —|— 0¢
flao+€) = Z Do) + ) D2 (o +66) o
la|<n—1 la|=n

Let (a,b) and g : (a,b) = R, g(t) = f(zo+t&) be as in Lemma above. By the one variable Taylor’s Theorem
(12.1), there exists 8 € (0,1) such that

nol k) n) nl (k) (n)
_ N 9(0) k., 9(0) n_ N~ 900 ™)
k=0 k=0
Since
(k) !
g\"™0) 1 k!
0| 2 D) €| (k<n-1)
la|=k
(n) !
g™ () 1 n!
and o = Z aDo‘f(xo—l—t%) 3
la]=n
Substituting them in above equation we get the desired expression for f(zg + &). O
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12.3 Multivariate Polynomial

Definition 12.2: Multivariate Polynomial

A multivariate polynomial p : RV — R (or N-variable) of degree n is given by

p(&) = Z Z Cu”

k=0 \|o|=k

where C, # 0 for some « with |a| = n.

Notice that

Definition 12.3: Taylor Approximation

Suppose f € C"1(D), the n'"* order Taylor Approximation of f is the polynomial

T = Y 20N e

ler|<n

and the remainder term is f(zo + &) — Tyz0(§) = X0 |0)=nt1 D2 f(zt6) o

al

Proposition 12.1
Let f € C"TY(D), D open, f: D — R, let 7y € D, then

LG

w- =0
=0 [i¢]

Lecture 24 - Friday, Jun 28

Proof. Let r > 0 be such that B,[zg] C D. Since f € C"*(D) and B,[z¢] is compact, we can find M > 0
such that
|IDYf(y)| <M for all y € B,[xo]

and all multiindex « with || = n + 1. Then if ||€|| < r, we have

LGP s (GRS Mgt 5 Ml

e = N o

al=n+1 =n+1 al=n+1
la la|

63



Example 12.4

et f(z,y) = cos(z + 2y) defined on R?, find T% (0,0)()
We have f(0,0) = 1, also

Je(w,y) = —sin(z +2y)  fy(z,y) = —2sin(z + 2y)
fea(®,y) = —cos(z +2y)  fyy(x,y) = —4cos(z + 2y)
Jay(x,y) = —2cos(z + 2y)

Then
Ty 00 (E,€2) = 10,0 + £(0,0)6 + £,0,0)8 + L2000z 00, (0 01,6,
=1 i _ ﬁ _ 25 f
- 2 9 162
=13 (& +48 - 16.6)

12.4 The Hessian

Definition 12.4: Hessian

Let @ # D C RY be open, f : D — R, f € C?(D). The Hessian of f at z € D denoted by
2
(Hess f)(z), is N x N matrix whose %, j-entry is ngég7 that is

Pf(x)  If(x) 0% f(x)
Ox? dz10z2  Oz:10zn
9% f(x)

(Hess f)(z) = 67”2.‘9‘”1
92 f(x) 9 f(x)

amNaml (993?\,

Notice that (Hess f)(x) is symmetric by Clairaut’s Theorem (10.1).

Corollary 12.2

Let f € C*(D), D C RY be open. Let 29 € D and £ € RY be such that o+t € D for all ¢ € [0, 1],
then there exists 6 € (0,1) such that

Flo +16) = (o) + VF(wo) € + 5 [(FHess f)(aro + 66)E) -]

Proof. STP that for all x € D we have

(D)) o

al

* [(Hess )()e) - €

|a|=2
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We compute,

« T N e 2
Z Mé‘a :ZM"'ZfzIIJ(x)gng

|a]=2 =1 i<j

as desired.

12.5 Ceritiacal Points
Definition 12.5: Stationary Point (Critiacal Point)
Let fe CY(D), f: D =R,
1. we say that xg € D is a stationary point of f (or a critical point of f) if V f(zq) = 0.
2. o is a local maximum if there exists 6 > 0 such that f(x) < f(xo) for all z € Bs(xo) N D.

3. g is a local minimum if there exists § > 0 such that f(x) > f(zg) for all x € Bs(xzg) N D.

If 2o is a local maximum (or a local minimum) of f, then z is a critical point. This is becasue if
g(t) = f(xo + te;) where 1 < i < N, then 0 is a local maximum (or local minimum) of g and so
- of (900)

0=g'0) = 57 = V(o) =0

Example 12.5

Let f(z,y) = 2% — y? defined on R2, then

Vi(z,y) = (2z,—2y)

hence (0,0) is a critial point of f, but it is neither a local maximum nor a local minimum.

Definition 12.6: Saddle Point

A critial point of f that is neither a local maximum nor a local minimum is called a saddle point.
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In order to clarify stationary point we need more linear algebra.
Definition 12.7
Let A € M, (R) be a symmetric matrix, we say
1. A is positive definite if (A¢) - ¢ > 0 for all 0 # & € RY;
2. A is positive semidefinite if (A¢) - ¢ > 0 for all £ € RY;
3. A is negative definite if (A¢)- ¢ < 0 for all 0 # ¢ € RY;
4. A is negative semidefinite if (A¢) - £ < 0 for all £ € RY;

5. A is indefinite if there are x,y € RY with (Ax) -z > 0 and (Ay) -y < 0.

Example 12.6

1 0 O
2 -1
For an instance, l L 9 1 is positive definite, I is positive definite, and |0 1 0 | is indefinite.
00 -1

Lecture 25 - Wednesday, Jul 3
In order to prove the Theorem (12.3), we first prove the following Lemma:
Lemma 12.2

Suppose f € C?(D), and xg € D be such that (Hess f)(z¢) is positive definite (or negative definite).
Then there exists § > 0 such that for z € D and x € Bs(zo), then (Hess f)(x) is positive definite (or

negative definite).

Proof. We will prove the statement for (Hess f)(xo) positive definite. Write A, = (Hess f)(zg). Define
Q: RN =R, Q(¢) = (A,,€) - & Then Q is continuous because it is the dot product of continuous functions
on RY. For all unit vectors ¢ € SN~1 = 9B;(0), we have Q(¢) > 0. Since SV~1! is compact, by the Extreme
Value Theorem, there exists 7 > 0 such that Q(&) > r for all ¢ € SV~1. Since f € C%(D), we can find § > 0
such that Bs(zg) C D and

N

Z‘fmlw ( ) fww Zo |+Z|fm T — fa I](.’Eo)‘ <

i=1 i#£]

N3

Then if z € Bs(z), we have for £ € SN-1

N
l(Azf)g_ x0§ Z fz 1:1 fz z; :EO 5 +Z fa: a:J fm wJ(xO))gzgj
i=1 i#]

N3

N
Z|fww fZDLLEL Zo |+Z’fw T fxzxj(xO)‘ <
i=1 i#]
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This implies that for & € SV~

=Lso

(A2) € > (Any6) - € - :

.

N3
N3

so x € Bs(wp), and € € RV\{0} and we get

(4,6) € = ] (Ax (ﬁ) - ﬁ) >0

Hence A, is positive definite for all = € B;s(zo).

Let @ # D C RY be open and f: D — R, f € C?(D). Let 29 € D be a critical point of f, then
1. If (Hess f)(xo) is positive definite, then f has an local minimum at zo;
2. If (Hess f)(zo) is negative definite, then f has an local maximum at xo;

3. If (Hess f)(zg) is indefinite, then f has an saddle point at z;

For an example where the above Theorem (12.3) does not apple, see A4.

Proof. 1. Suppose (Hess f)(zo) is positive definite. Let 6 > 0 be such that (Hess f)(7y) is positive definite
for all v € Bs(zp) C D. Take x € Bs(xzg). Write £ := x — x¢, so that ||¢]| < . By Taylor’s Theorem

(12.2), there exists 6 € (0, 1) such that

f(.iL'o + f) = f(ivo) + Vf(xo) &+ %(HGSS f)(l‘o + 95) <€
= feo) + 5 [(Hess f)(wo + 66) -

Then
F(&) — (o) = S0 +06) ~ F(wo) = 5(Hess f(zo +0E)E) € > 0

Hence zq is a local minimum for f;

2. Follows as in (1);

3. Suppose (Hess f)(zo) is indefinite, we want to show that given € > 0, there are x,y € B:(x¢) N D such

that
fl) < f(wo) < f(y)

Let &1, & be unit vectors in RY such that

(Hess f)(z0)&1-&1 <0 and  (Hess f)(z0)&2 & >0
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Arguing as in the proof of Lemma (12.2), we can find § > 0 such that Bs(z¢) C D and if z € Bs(xo),
(Hess f)(z)é1 -6 <0 and  (Hess f)(x)62-& >0

Then given € > 0, set ¢/ = min{§, e} and let & := %51 and 7 = %/52. So xg + &ery o + ner € Bs(xo).
By Taylor’s Theorem (12.2), there are 61,602 € (0,1) such that

f(xo+ &) = f(x0) + <Z> : %(HGSS o +&)61 - &

Flan-+ 1) = fan) + (5 ) - (Hess ) + ) -

Setting = xg + & and y = x¢ + 1 we see that z,y € B.(zo) and by (1), f(z) < f(zo) < f(y).
O

Theorem 12.4
Let A = (a;5):,; € My (R) be symmetric. TFAE:
1. A is positive definite (or negative definite);

2. All eigenvalues of A are positive (or negative);

aql a2 et Qg i1 12 e Qg
« '.. o '..

3. det | >0 |or (=1)%det | " >0 forallk=1,...,N.
(67231 Ak (07331 Qgk

Corollary 12.3: Second Derivative Test in R?
Let @ # D C R? be open, f: D — R, f € C?(D). Let xo € D be a critical point of f, then
1 If for(zo) > 0 and fru (o) fyy(z0) — fuy(z0)? > 0, then z¢ is a local minimum of f;
2. If foz(z0) <0 and fou(z0) fyy(®o) — foy(wo)? > 0, then zp is a local maximum of f;
3. If fuu(w0) fax(w0) — fuy(w0)? <0, then zq is a saddle point of f;
Proof. (1) and (2) are clear. For (3), let A1, A2 be the eigenvalues of (Hess f)(zq), then
fm(xo)fm(xo) . fxy(l'())Q = det((Hess f)(.’[o)) = )\1)\2 = )\1)\2 <0

So A1 and Ay have opposite signs. If &1, &2 are eigenvectors, we have (Hess f)(z)&1-&1 and (Hess f)(x0)&2 &2
have opposite signs. Hence (Hess f)(xq) is indefinite. O

Lecture 26 - Friday, Jul 5
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Example 12.7

Let K = {(z,y) € R2 : 22 +3y?> < 1} and let f : K — R, f(z,y) = 2? — 2y + *. Find the global

maximum and minimum of f on K.

Proof. Since K is compact and f is continuous, we know from the Extreme Value Theorem that the problem
has a solution. Let D = K° = B1((0,0)). We have f, = 2z —y and f, = 2y — . Then (0,0) is the only
critial point of f in D. We have f,, =2, fyy, =2, and f;, = —1, so

(Hess f)(0,0) = [_21 _211

Then fze > 0, and fop fyy — 121/ > 0, thus (Hess f)(0,0) is positive definite. By second derivative test, f has

local minimum at (0,0). Now we want to verify
OK = {(x,y) : 2° +y* =1} = {(cosf,sinf) : 0 < 0 < 21}
Consider g(0) = f(cosf,sinf) = cos?d — cosfsinf +sin*6 =1 — cosfsinf =1 — w, we have g(0) > 1.
Hence f attains its minimum on K at (0,0) since f(0,0) = 0. We have ¢’(0) = — cos(20). Thus the crital
points of g in (0,27) are 6; = T, 6 = 2%, 05 = 2T and 6, = ZF. Now ¢”(0) = 2sin(26) gives that
g'(01) =2=yg"(0s) and  g"(02) = -2=g"(04)

Also g(0) = 1 = g(2), so 6 and 64 are local maximum of g. Compute g(f2) = 3 =
attains its maximum at (cos(62),sin(s)) = (—%, ?) and at (cos(0y),sin(64)) = (72, —72> O
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13 Local Properties of Continuously differentiable function

13.1 Inverse Function Theorem

Roughly, the IFT states that if D c RN, f: D — RN, f € CY(D,RY) and (Df)(zo) is invertible, then
there exists an open neighborhood U of x( such that f is one-to-one on U, and f~!: f(U) — R¥ is also
continuously differentiable.

Definition 13.1: Contraction

Let @ #S C RN and ¢ : S — S, we say that ¢ is a contraction if there exists 0 < ¢ < 1 such that

le(@) =)l <clle—yl  Vayes

Theorem 13.1: Contradiction Mapping Principle

Let @ # F C RY be closed and ¢ : F — F be contraction. Then there exists a unique z, € F such
that @(x,) = . (i.e. f has a unique fixed point z. € F).

Proof. For uniqueness, suppose ., yx are fixed point of ¢, then

2« = yell = llo(zs) = ()| < cllze =yl < 12w — yal|

Hence we must have x, = y.. For existence of z., take z¢p € F, define an sequence (z,,) in F' recursively by

setting z,, = ¢(x,—1) for n > 1, so we have for n = 1,

[#nt1 = @nl = lz2 — 21]| = [le(21) — @(xo)|| < ¢llzs — o

25 — @ao|| = l@(z2) — @(@1)[| < cllwe — z1] < ¢ [lay — zo|

Continuing with this process by induction we obtain for all n > 1,

[Zn+1 — 2nll = lo(@n) — (zn_1)|| < " [Jz1 — 20|
Then if m > n > 1, we have
m—1 m—1 m—1
[m = 2nll = || Y @rsr —2a)|| < D @rgr —z)ll < Dl — ol
k=n k=n k=n

Since the sum Y 72, ¥ ||z1 — zo|| converges because 0 < ¢ < 1, we deduce that (z,,) is a Cauchy Sequence.

We let z, := lim, o xy, then x, € F because F is closed. Since ¢ is continuous, we get
o(zs) = lim @(x,) = lim z,11 = x4
n—oo

n— oo

proving that x, is a fixed point of . O
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Let @ # D C RY be an open convex set. Let f: D — RM be differentiable and suppose there exists
R € R such that [|[Df(z)|| <R for all x € D. Then for all 2,y € D, we have

1f(2) = F)ll < Rz =yl

Proof. Fix x,y € D, x # y and consider g : D — R, g(z) = (f(z) — f(y)) - f(2). Then g is differentiable
and Vg(z) = (f(z) — f(¥))T(Df)(z) by Product Rule (10.2). By A3-Q3, there exists £ in the line segment
between x,y such that

g(x) —g(y) = Vg(§) - (x —y)

Thus
£ (@) = fFWII* = (f@) = F@) " (DHE)(z —y)
= |If(@) = fWI* < I1f(z) = FW)I Rz - yll
giving us [|f(z) — f(W)|| < Rz —y||. U

Lecture 27 - Monday, Jul 8

Let @ # D C RY be open and f € C'(D,RY). Let 2o € D be such that (Df)(zo) is invertible and set
yo := f(z0), then

1. There exists an open set U C D, V C RN with 2y € U, yo € V, f is one-to-one on U and
V:=fU);

2. If g : V — RY is the inverse of f defined on V (i.e. g(f(z)) = z for x € U), then g is continuously
differentiable and
(Dg)(y) = [(DF)(g(y)) ™

(Df)(xo) is invertible if and only if det(J¢(xo)) # 0.

If we write f(xla"'axN) = (fl(l'l""7$N)5"'7fN(m17"":EN))»

yi = fi(z1,...,2N)

yn = fn(z1,...,2N)
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Then the IFT (Inverse Function Theorem 13.3) tells us that the system given above can be solved
for z1,...,xn in terms of y1,...,yy when we restrict to a small neighborhood of ¢ and g, and the

solution is continuously differentiable.

Example 13.1

Let u = ””435;”4 and v = sinx + cosy. Can we sovle the system above for x and y in terms of v and v?
We have

3‘/1:4_ 4 iﬁ
Jp(@y)=| = v
cosx —siny
3 4 4 4 3
= det(Js(z,y)) = —siny (w—2y> —cosz - -2
x x

det(Jf(z0)) = — [3 (%)2 - (%)Z] =2 (3)2 70

Hence the IFT (13.3) says that near zp we can solve the system for z and y in terms of u and v.

Proof. This is the proof for IFT (13.3)
The formula for (Dg)(y) follows from @Q5¢ in the Midterm Exam.

1. For part 1:
Set A = (Df)(z). Let U be an open ball such that

1

I(Df)(x) — Al < A where A = AT

This exists becasue f is continuously differentiable. We can also find that (D f)(z) is invertible for all
z € U (See A4Q5). For y € RY fixed, define ¢, : D — RY by

py(r) =z + A7y - f(2))

(a) Claim 1: y = f(z) if and only if x is a fixed point of ¢,
Indeed, y = f(z) gives p,(z) = x since A~ (y — f(x)) = 0. Conversely, if p,(x) = z, then
A=Yy — f(x)) = 0, which implies that y — f(x) = 0 because A~! is one-to-one.

(b) Claim 2: |l@y(z) — @y (2)|| < 3 llz — 2| for all z,2 € U
Notice that ¢, (z) = Iz + A~y — A~ f(x), so by the Chain Rule (10.3), ¢, is differentiable and

(Dey) () =1~ A7H(Df)(x)
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Then

|(De) @) = A7 A= A7H D)) = A7 (A = (D) @)
<[la7t 14— (D)@
1

_ 1
< HA 1|| 2 AT 9

Hence by Theorem (13.2), we have |¢,(z) — ¢y (2)|| < 3 ||z — 2| for all z,z € U.

This shows that ¢, has at most one fixed point in U, so f is one-to-one in U by Claim 1. Set V' = f(U),
we will show that V' is open. Let w € V and let z € U be such that w = f(z). Let r > 0 be such that
B. = B.(z) C U, we will find 6 > 0 such that if ||y — w|| < J, then ¢,(B.) C B.. First, notice that if

x € B, then by Claim 2,
r

1
ly(@) = oy (N < 5 llo =2l = £

Let 6 := Ar, and let y € RY ||y — w|| < 4, then

r

lin(2) =2l = [ls+ A7 = 1) = 2] = A7 @ = w) | < A7 [y = wll < |47 5=y = 5

Then if ||y — w|| < J, and x € B, we have

ley(2) = 2]l < lloy () — @y () + llpy(2) — 2]l

<r+r
4=y
-2 2

giving that ¢, (B.) C B.. By the Contraction Mapping Principle, ¢, has a unique fixed point z, € B.,
soy = f(xs) € f(U) =V by Claim 1. This shows that f(U) is open.

. For part 2:
Let g: V — RY be the inverse of f on U. Let y € V, y+k € V, and let 2,2 + h € U be such that

flx)=y, fla+h)=y+k

Notice that & is uniquely determined by k.
Lecture 28 - Wednesday, Jul 10
Notice that

@y(x+h) —py(x) =h+ A" (y - f(x +h))
=h— A"k

Thus by Claim 2,

1 1 _ |zl Sl 17l
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giving that ||A~1k| > HQL” Hence
Il < [JATH -2 [l&ll = A7 I
Let T = [(Df)(z)]}, then

9y +k) —gly) =Tk =h—Tk
=TT 'h—Tk
=T ((Df)(x)h — (f(x+h) — f(z)))
Now we have

lgCy + k) —g(y) = Tkl _ [TII[f(z+h) = f(z) = (Df)(@)h]
[l N Al

Taking the limit of k approaches 0, then h approaches 0, and it follows that

i 19+ ) —9(y) — Tk _

0
k—0 1%l

proving that g is differentiable at y. Finally, we will show that g € C1(V,RY), that is, y € V — J,(y)

is continuous. This follows because the map is the composition
V —9U —'f GLy(R) — ! GLy(R)

All the maps are continuous (See A4Q5), hence g € C1(V,RY).

Theorem 13.4: Open Mapping Theorem

Let @ # D C RY be open, f € C1(D,RY). Suppose that (Df)(z) is invertible for all z € D, then for
every W C D open, f(W) C RY is also open.

Proof. Exercise. O

13.2 Implicit Function Theorem
Definition 13.2: Level Curves
Let f be a function defined on R?, we write 2 = f(z,y). The level curve of f determined by ¢ € R in
the set of all points in R? such that f(z,y) = c.
We wish to locally express the set of points f(z,y) = 0 as the graph of a function y = g(x).
Example 13.2

flx,y) =2 —y, so f(z,y) = 0 given y = x2. Take g(z) = 22.
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Example 13.3

f(x,y) = 2% +y? — 1; Near (1,0), we cannot express the set f(x,y) = 0 as the graph of a function of
y=g(x).

Definition 13.3

We will write (z,y) € RV+*M as

(may) = (xla"wavyh'"ayM)

given a system of equations

fi(zy,. o eN, Y1, ym) =0,

fq(mla-~'7xN7y17"'7yM) =0

we want to locally express y in terms of z, so that y1 = ¢1(z1,...,2N), ...,y = gu(T1,.. ., ZN).
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13.2.1 The Linear Case

xT

Suppose f(z,y) = A ; A€ Mursv4an)(R). In the case
Y

A= [Aw Ay} Ay € Marxn(R), A, € Massar(R)

we have f(z,y) = 0 gives Az + Ayy = 0. From linear algebra we know that if A, is invertible, then the
equation A,z + A,y = 0 uniquely determines y in terms of = by

_ -1
y=—-A, Az

In general, given a linear transformation A : R¥N+M — RM we can split A into two linear transformations
Ay RV - RM and A, : RM — RM | where A, (x) = A(x,0) and A,(y) = A(0,y), so that

A(z,y) = Az(z) + Ay(y)
If f is differentiable, A = Jy(xo), write A, = %5, A, = %5.

Let @ # D C RN*M be open and f € CY(D,RM). Let (z0,y0) € RVTM be such that f(z,y0) = 0
and let A = (Df)(xo,y0). Suppose that A, is invertible, i.e.

fi ... Oh
oY1 Oym
det 7é 0 at (l‘o, yo).
Ofm ... Ofm
Oy1 Oym

Then there exists an open neighbourhood U C D of (z¢,yo) and W C RY | open neighbourhood of x(,
such that

1. For every z € W, there exists a unique y,, such that (x,y,) € U such that f(x,y,) = 0.

2. If we define g : W — RM | g(x) = y, where y is as in part (a), then g is continuously differentiable
(9 € CY(W,RM)), (z,y) € U and f(z,y) =0, Yo € W, and

(Dg)(wo) = —A; ' Ay

The function g is implicitly defined by the equation f(z,y) = 0.
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Lecture 29 - Friday, Jul 12

Proof. Define F := D — RN+*M by F(z,y) = (z, f(z,y)). Then F is continuously differentiable because f
is. Our claim is that (DF)(zo,yo) is invertible. Indeed, we have

In Onxm
JF($07y0) = [Bf a>]<v
oz dy

Then because Ay is invertible,

det Jp(zo,yo) = det Iy - det g—f #0
Y

Then the Inverse Function Theorem (13.3) gives us an open neighborhood U C D of (zg,yo) such that
V := F(U) is open, F is one-to-one on U, and G : V — U C R¥NTM is also continuously differentiable.

We define W € RY by W := {w € RY : (2,0) € V'}, then 9 € W because (xg, o) is in U and F(zo,yo) =
(20,0n7). Also, W is open because V is open. If z € W, then because V = F(U), there exists (¢/,y') € U
such that F(z',y’) = (¢, f(2',y)) = (x,0), which shows that 2’ = z and f(z,y") = 0.

Now we wish to show uniqueness. Suppose 31,72 € RM are such that (x,91), (2,92) € U and f(z,y1) =
f(z,y2) = 0. Tt follows that F(z,y1) = (2,0p) = F(z,y2). Because F is one-to-one on U, thus we must
have y; = yo, proving part (a).

For part (b), let g : W — RM | g(x) = y. Consider G(x,0) = (z,g(x)), since G € C1(V,RN*+M) (is continuous
differentiable), we must have that g € C1(W,RM). Then we compute (Dg)(z¢). Consider ¢ : W — RNTM
#(x) = (z,g9(x)), then ¢ € CHW, RN + M), ¢(x0) = (z0,y0). Also, for all z € W and h € RN

(D)(x)h = (h, Dg(x)h)

In terms of the Jacobian Matrix of ¢ at x,

Jo(x) =

Iy ]
Jg(x)

Now f(é(z)) =0 for all z € W. Applying the Chain Rule (10.3) we get
(D) (o) (DP)(x) =0 Ve eW
Thus for x = xg and h € RN, (Df)(z0,v0)(D¢)(x¢) = 0, add

(Df)(x0,y0)(D)(xg)h =0
(Df)(wo,0)(h, (Dg)(wo)h) =0
At A, (Dg)(o)h = 0

Since A = (D f)(xo,yo), this yields
(Dg)(xo)h = fAyflAzh

because A, is invertible. Hence (Dg)(xo) = —A; ' A, as needed. O
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Above we only needed A, invertible to obtain (Dg)(z¢) = —A, 1A,. Since the set of invertible linear
tranformations is open, we can assume that %5 is invertible for all (x,y) € U and hence

af\ " of
D =— (= —
(Dg)(x) (8y> D Ve e W
Example 13.4
Consider the system of equations,
2eY1 + yox1 — 4o + 3 =0

yacosys — 6y +2x1 —x3 =0
where there are five variables and two equations:
N+ M =5, M=2

It is easy to check that (3,2,7,0,1) is a solution. Can we solve the solution near (3,2,7,0,1) by (z, g(z))
where g : W — R?, W C R3.
Let f : RS — R27 f(1'171’2a133ayhy2) = (fl(xa y)7 fQ(xay)) where

fi(z,y) = 2e¥ + yowy — 420 + 3
fo(z,y) = y2 cosyr — 6y1 + 221 — x3

We have f € C1(R® R?) and

vy —4 0 2eY1 T
Jy(z,y) = .
2 0 —1 —yssiny; —6 cosy;
At (3,2,7,0,1)
-4 0 2 3
J:(3,2,7,0,1) =
i ) [ 0 -1 -6 1]
Hence
1 -4 0 2 3
A == 5 A =
T2 0 —1] Y [—6 1]

Now det A, = 24 18 = 20 # 0, so A, is invertible. Thus by the Implicit Function Theorem (13.5),
there exists an open neighborhood W C R?, of (3,2,7), and g : W — R2, continuously differentiable
with ¢(3,2,7) = (0,1). Also

f(z,g(z))=0 Ve e W

78



111 =3
_ - -1 _
We have (Dg)(3,2,7) = —A, ' A,, where A! = 20 [6 5 ], thus

(Dg)(37277) = l

=

o G
%)

HO‘CO

|

_1
2
This does not give the partial derivative of g at (3,2,7).

Lecture 30 - Monday, Jul 15

14 Integration on RY

Suppose f : [a,b] = R, f >0, f is Riemann Integrable. Then

/abfdac

represents the area under the graph of f:

<

/'
I/
Z

/ fdx is defined as the limit of Riemann Sums, so that

/fdx A if(xi)(l’i —Ti-1)

Suppose f : [a,b] X [¢,d] = R, f(z) = e, e > 0, then we expect the /f to be the “volume” under the graph
of f, so that

/f:e-<bfa>-<dfc>

We wish to define th Riemann integral of f: A — R, f > 0 via a limit process.
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We start by considering function defined on rectangles

I = [al,bﬂ X [ag,bg] X X [aN,bN] C RN

Definition 14.1: Volumn (Content)

We define the volume of I (also called the content of I ) by

N

u(I) = Vol(I) = [[(b: — a;)

i=1

Definition 14.2: Partition

For each j =1,...,N,let a =t;0 <t;1 <--- <tjn, =b; bea partition of the closed interval [a;, b;],
and define
Pj :{t]”lll:o,...,’ﬂj}

Then the Cartesian Product P = P; X --- X Py is called a partition of I. A partition P of I gives
the subdivision of I into ny x --- x ny subrectangles, which are called the subrectangles corresponding
to P. So for each j and 1 < k; < N, we have a subrectangle

I'=1[tig 1,10, X 2 ko—1,t2,k5) X - X [EN kn—15EN kn )

bt e O S
N U— S— — -
f 1 feeee e
FSPY O RS — -

t1,0 = a1 t11 tig bi=t13

Figure 1: Subdivision generated by a partition
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14.1 Riemann Sum

Definition 14.3: Riemann Sum

Let I = [a1,b1] X -+ X [an,bn] C RN be a rectangle and f : I — RM be a function. Let P be a
partition of I. For each rectangle I, in the subdivision of I corresponding to P choose z, € I, then

the sum

S(f,P) = flwa)p(la)

acP

is called the Riemann Sum of f corresponding to P.

Notice that the sum S(f, P) depends on the partition P and also on the choice of points z, € I,.

Definition 14.4: Refinement

Let P = P, x --- x Py be a partition of I, we say that a partition @ is a refinement of P if P; C Q;
forall j=1,...,N.

Suppose P is a partition of I, then

I=JIn and ()= )

acP acP

Proof. Prove this by induction on N. The result holds because the rectangles I,’s may overlap at most along

their boundaries, so @ is a refinement of P, then for each o € P,

Io=J andso p(la)= ) u(Jp)

BeQ BEQ
JgCly JgCly

Suppose P and @) are partitions of I, then there is always a common refinement R of P and Q. For

example,
R=R; X+ X Ry

where R; := P;UQ@; for j=1,...,N.
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14.2 Riemann Integrable

Definition 14.5: Riemann integrable

Let I € RY be a rectangle and f : I — RM be a function. Suppose that there exists y € R such that
for every € > 0, there exists a partition P. of I such that for each refinement P of P. and all Riemann

sums S(f, P) corresponding to P, we have
IS(f, P)—yll <e

Then we say that f is Riemann integrable and y is the Riemann integral of f.

y:/If /fd,u /If(:cl,...,xN)du(xl,...,xN)

Notation:

Proposition 14.1

Suppose f : I — RM is Riemann integrable, then / f is unique.
I

Proof. Exercise. (The proof uses the uniqueness of limit). O

14.2.1 Cauchy Criterion for Riemann Integrable

Theorem 14.1: Cauchy Criterion for Riemann integrable

Let I C RY be a rectangle and f: I — RM, TFAE:
1. f is Riemann integrable;

2. For every € > 0, there exists a partition P. such that for all refinement P and @ of P. and all
Riemann sum S(f, P) and S(f, Q) corresponding to P and @ respectively, we have

1S(f, P) = S(f,Q)ll <e

Lecture 31 - Wednesday, Jul 17

Proof. 1. (=)
Given € > 0, let P. be a partition of I such that

o= o] <

for all refinements P of P. and Riemann sums S(f, P). Thus if P and @ are refinements of P, and
S(f, P) and S(f, Q) are Riemann sums corresponding to P and @ respectively, we have

IS(,P) = S(£Ql < 5+ 5 =¢
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2. (=)
Suppose 2. holds. Then for every € = 2% there exists a partition P,, of I such that

IS¢, P) ~ S(1, Q) < 5

for all refinements P and @ of P,, and all Riemann sums S(f, P) and S(f, Q). By taking common refinements
if necessary, we may assume that P, ;i is a refinement of P, and in particular

1

IS(f, Praia) = S(f, Po)ll < o7

for all Riemann sums corresponding to P, and P,y; respectively. For each n let y, be a Riemann sum
corresponding to the subdivision of I given by P,,. Thus ||yn11 — ts|| < 5+ for all n. It follows that (y,) is
a Cauchy sequence. Set y := limy, o y,. We will show that y =/ I9E Let € > 0 be given. Choose k such
that [y — yn|| < § for all n > k. Let n > k such that < £. Set P. := P,. Let P be a refinement of P,
and S(f, P) be a Rlemann sum. By (10), |S(f, P) — yn|| < 5w < 5. Thus

9 &
1S(7, P) =yl < US(£, P) =l + g — 9l < 5+ 5 =<

giving that y = |, ; [>and f is Riemann integrable. O

Let I C RY be a rectangle and f : I — R™ be a function. Then f is Riemann integrable if and only if
each component f; : I = R, j =1,...,M of f is Riemann integrable (see A5).

Corollary 14.1

Let I C R be a rectangle and f : I — RM be a function. TFAE:
1. f is Riemann integrable;

2. For every € > 0, there exists a partition P. of I such that

||Sl(f7p) SQ(f’ )||<E

for all Riemann sums S;(f, P:) and Sa(f, P-) corresponding to P-.

Proof. 1. = 2. is by Theorem 5.7.
2. = 1. Suppose 2. holds. By the preceding remark, we may assume M = 1. Let € > 0 be given
and let P. be a partition of I as in 2. Let P and @ be refinements of P. and let

Zfl‘g 5 and Sf, fo'y

Bep YEQ
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be Riemann sums associated to P and @ respectively. Then for each a € P. we have

L= U #»= U K

BEP,JgCla v€Q,K,Cl,
and

pllo) = > wlle) = > K,

BEP,J5Cla 7€Q.K,Cla

by Discovery (14.2). For each o € P let
Bo={f(zp) | BE€ P, Jg C Lo} U{f(zy) |7 €Q, K, C I}
Then B, is finite and we let z,,w, € I, such that

f(za) = maxB,, f(ws) = minB,.

Then
F(wa) < f(29) < [(a), V7€ P, C I
We have
S(f, P Z f(@)u(Js) — Z flay)n(Ky)
Bep vEQ
= ( zg)u(Jp) — Z f(@y)p(Ky)
a€P. \BEP,J5CI, veQ,K,Cl,
< (f wJp) = flwa) D ul(K)
agP; BeP JCl, veQ,K,Cl,
= f(Za Z Jlwa)p
a€P. acP;
= Sl(fape) _52(faP£) <e
Similarly,
S(fvp) _S(faQ) < Sl(f,Pe) _SQ(fv-PE) > —& = ||S(f,P) _S(va)” <e
by Theorem (14.1) (2. = 1.), f is Riemann integrable. O

Theorem 14.2

Let I € RY be a rectangle and f : I — RM be continuous. Then f is Riemann integrable.

Proof. Since I is compact and f is continuous, then f is uniformly continuous on I. Given € > 0, let 6 > 0

be such that
€

[ (@) = f)ll < w0
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for all z,y € I, ||z — y|| < 0. Choose a partition P. of I such that x,y € I, ||z —y|| < ¢ for all & € P..

Let
Si(f,P) = Y fl@wa)pla), So(fiPo) = Y f(ya)p(la)

acP. a€P.

be Riemann sums corresponding to P.. Then

1S1(f, Pe) = Sa(f Po)ll = || D (F(2a) = F(ya))p(La)

a€P.
< Z Hf(xa) - f(ya)HM(Ia)
a€P.
9
<&
=€

since To, Yo € Io = ||Ta — Yaol| < §. By Corollary (14.1), f is Riemann integrable.

Lecture 32 - Friday, Jul 19

14.3 Content Zero

Definition 14.6: Content Zero

We say that a set A C RY has content zero, write u(A) = 0, if for every e > 0, the rectangle I, . . .

(may overlap, finitely many) with
AclJrn  and ) ul)<e
j=1

Note: if A C B and B has a content zero, then A has content zero.

Example 14.1: Examples of content zero
1. Finite set;

2. If Aq,..., A, have content zero, then their union has content zero;

i In

3. If I ¢ RV is a rectangle, then OI has content zero. This is because JI is a finite union of sets of

the form [CL, b] X oo X [ai_l,bi_l] X {Ci} X [ai+1,bi+1] X [an,bn], where ¢; € [a“bl]

Proposition 14.2

Suppose K C R¥ is compact and f : K — R is continuous, then graph(f) = {(z, f(z)) : 2 € K} C

RN+ has content zero.

Proof. See A5.
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Example 14.2: Examples of non-content zero
1. Z;

2. Q

3. QNo,1].

14.4 Measure Zero

Definition 14.7: Measure Zero

Let A C RY, we say that A has measure zero if for every £ > 0, there are countably many (possibly
infinite) rectangles Iy, I, ... in RY such that

AcC DIj and Zu(Ij)<6
j=1

1. A C B and B has measure zero implies that A has measure zero;

2. A has content zero implies A has measure zero; (How does this work? Choose all the subsequent

rectangles to be @, iykyk :3).

Proposition 14.3

Suppose A1, Aa, ..., A,, ... are subsets of RY with measure zero, then A = U;=, 4; has measure zero.
Proof. Let € > 0. For each ¢ =1,...,let I; 1,1;2,... be a coutable collection of ractangles such that
oo o0 €
A; C U Ii,j and Z[L[Ii,j} < 5
Jj=1 Jj=1
Then
oo o0 oo oo o0 €
AC U UIi’j and ZZ/L[ILJ] < Z? =¢
i=1 \j=1 i=1 j=1 i=1

Since N x N is countable, we get A has measure zero.

Example 14.3

Countable set have measure zero (e.g. Q, Z, Q N[0, 1]), while [0, 1]\Q does not have measure zero.
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Theorem 14.3

Suppose K C R¥ is compact and has measure zero, then K has content zero.

Proof. Let € > 0 and let Iy, Io, ... be rectangles with

o0 oo
€
K C 1; 1] < =
U j and Z,u[ il < 5
Jj=1 j=1
For each j choose I} a rectangle with I;° O I; and
I L)+ =
plly) < plly) + 55
By compactness, there are rectangles I ;1, N | j’n such that
KclJrz ez,
i=1 i=1
n oo oo e
z;uu;i) < ;uuj)' < Z (nm) +57) <<
i= j= j=

Definition 14.8: “Has Content”

1. Let @ # D C RY be bounded and let I € RY be rectangles containing D. We say that a function
f: D — RM is Riemann integrable on D if the f : I — RM given by f(z) = {f(z):x € Dor 0:
x otherwise} is Riemann integrable, in which case we define the integral of f on D by

Jr= )

2. Let @ # D C RY be bounded, we say that D Has Content if the Characteristic Function

on D is integrable, where

1 ifxeD
Xp :RY - RM xp(2) =
0 otherwise

We define the content of D (the volume) by

If D = I is rectangle, then it coincides with the volume of I.
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14.5 Lebesgue Theorem

Theorem 14.4: Lebesgue Theorem

Let I C RN be a rectangle and let f : I — RM be bounded, then f is Riemann integrable if and only
if the set By = {& € I : f is not countinuous at =} has measure zero.

Proof. Notice that we may assume M = 1 because
M
By = U By,
j=1
where By, = {x € I : f; is not countinuous at x}, f; is component of f.
1. (&)
We define for z € I the ocsillation of f at x by
o(f,ac) = lim [M(.’E, fs 5) - m(w,f, 5)]
0—0

where M(x, f,6) = sup{f(y) : vy € Bs(x)} and m(x, f,§) = inf{f(y) : v € Bs(x)}. The limit above
exists because the function
d M(:C7f7(5) _m($7f76)

is decreasing. Notice also o(f,z) > 0.

(a) Claim 1: f is continuous at z if and only if o(f,z) = 0;

(b) Claim 2: For every € > 0 the set B = {z € I : o(f,z) > £} is closed (in particular, B, is

compact).

Proof. We will prove that BN I is relatively open in I. Let o € I with o(f,z) < e. Let 6 > 0 be such
that M(z, f,0) —m(x, f,0) <e. Let y € Bs(x) and take &, > 0 such that Bs, (y) C Bs(z), then

M(yvaéy)_m(yvaay) §M(x7f75)—m(x,f,5) <e

giving that o(f,y) < e. Thus B. is relatively closed in I, so B is closed. O
Lecture 33 - Monday, Jul 22

Notice that B, C By by claim 1, hence B, has measure zero. Thus B, has content zero by Theorem
(14.3). Let € > 0 be given, let Uy, Us, ..., U, be rectangles such that B, C U;-Lzl U; (union of intervals)
and 337, pu(l;) < e. Let P be a partition of I such that for each a € P/, the rangles I, has one of
the following properties:

(a) I C Uj for some j =1,2,...,n, or;
(b) I. N B. # .
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This can be done by considering the rectangles U; N I, and because if
LnlJwinn | =2
j=1

then I, N B. = @. Let M > 0 be such that |f(z)] < M for all « € I, then

‘f(xa)_f(ya) SQM an7ya61a|

Now we get

Z [f(za) = f(ya)] u(la)| < Z |f(za) = f(ya)l 1(la)

I,CU; for some j I,CU; for some j

<2M > ()

I,CUj for some j

<2M > u(U;) = 2Me
j=1

(a) Claim 3: If o € P! and I, N B. = &, then there exists a partition P, of I, such that

|f(zp) — f(yp)l <26 Vg,ys € Jagp

where J, s is a subrectangle in the in the subdivision corresponding to P,.
Proof. Since I, N B: = &, we have o(f,x) < ¢ for all x € I,. For each x € I, let §, > 0 be such that

fy) = f(2) <e  VyzebBs,(x)

then
I, C U Bs, /2(x)

el

Let {x1,22,...,2¢} be such that
¢

In c |JBs,, j2(1)

i=1
Take 6 = min{d,,/2:i=1,...,¢}. Let P, be a partition of I, such that =,y belong to the subrectan-
gles, we have ||z —y|| < 4. It follows that if 25,ys € Io g, then taking i such that z5 € Bs, a(z;), we
have yg € Bs, (). This gives |f(zg) — f(yp)| < 2e. O

It follows by Claim 3 that we can find a refinement P, of P/ with the properties above and also with

g

the additional property that |f(za) — f(ya)| < 2e, where a € P, and I, N B. = &. Let S1(f, P-) and
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Sa(f, P-) be Riemann sums corresponding to P:, then

Yo lfra) = fwalpa)| < D f@a) = fwa)lpla) + Y. [f(@a) = f(ya) n(la)

a€P: a€P:,I,CU; a€P.,[,NU;j=¢
< 2Me + 2ep(I)
Thus by Corollary 14.1, f is Riemann Integrable.

- (=)
Suppose f is Riemann integrable, for each n, let

1
By ={xel:o(fx)> E}
By Claim 1,
Bf = U Bl/n
n=1

Thus STP that each B/, has measure zero (in fact, content zero). Fix n and let ¢ > 0. Let P be a
partition of I such that
€
Si(f, Fe) = Sa(f Pe) < o

for all Riemann sums Sy (f, P.) and Sa(f, P-). Write

Bi/p = C1UC where Cy = {2 € By, : © € 9], for some a}

Cy ={x € By, : x € I, for some a}
Then C4 has content zero because each I, does. Let
S={l,:I3NCsy # o}
Then Cy C Ulaes I,. Given &’ > 0, &’ < 1/n, for each I, € S, we can find x4,y € I, such that
flza) = flga) > -~

since I3 N Cy # @. It follows that

0= 3 (22 )ult) < Y (o)~ S a)

I, €S I, €S

= S1(f, P) = Sa(f. P2) <~

Since €’ > 0, this yields that

so Cy has content zero as needed.
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Corollary 14.2

Let @ # D C RY be bounded, TFAE:
1. D has content;

2. 0D has content zero.

Corollary 14.3

Let @ # D C RY be bounded and 0D has content zero. If f : D — RM is continuous, then f is

Riemann integrable.

Corollary 14.4

Let f : I — RM and suppose the set of points at which f is discontinuous is countable, then f is

Riemann integrable.

Proposition 14.4: Properties of the Riemann integrable

Let @ # D C RY be bounded, let f,g; D — RM be Riemann integrable, then

Jva=[1+[q

2. |lfll: D = R, || f(x)] is Riemann integrable, and;

[=<[q

4. If M =1, D has content and r < f < R, then

1. f + g is Riemann integrable, and;

3. f M =1, f <g, then

ru(D) < / f < Ru(D)

Lecture 34 - Wednesday, Jul 24

14.5.1 Mean Value Theorem for Integration

Theorem 14.5: Mean Value Theorem for Integration

Let @ # D Cc RN and f: D — R continuous on D. Suppose that D is compact, connected and has
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content. Then there exists x¢g € D such that
| £= ranup)

Proof. Since D has content, and f is continuous, then f is Riemann integrable by Corollary (14.3). Let
r, R € R such that
r<f<R

By extreme value theorem, there are p,q € D such that
flp)=r and flg) =R

We have
ru(D) < /f < Ru(D)

so if u(D) =0, /f =0 and any xg € D satisfies the result. Assume u(D) # 0 and let

_Jr
A= LD

so f(p) < A < f(q) and since D is connected, there exists by the intermediate value theorem zy € D such

that
_Jr

14.6 Fubini’s Theorem

How do we actually calculate the integral, / f?
D

Example 14.4

Using a simple exmaple to show the idea: Suppose I = [a,b] x [¢,d] C R? and f : I — R continuous,

f>0. Hence / f is the volume of the region under the graph of f. In particular, we have

/Ifz/ab (/Cdf(x,y)dy> dxzfcd (/abf(x,y)dx) dy

It could happen in general that for some z, the function y — f(x,y) is not Riemann Integrable.

Theorem 14.6: Fubini’s Theorem

Let I C RN and J C RM be rectangles and f : I x J — RX be Riemann Integrable. Suppose that for
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each z € I the function y € J + f(z,y) € RX is Riemann integrable and let

hx) = /J faydy (rel)

Then h is integrable and

[(Lf@wyw>dx=£h@ymz [ s

A similar statement holds if z +— f(z,y) is integrable for each y € J and we let g(y) =

/I f(z,y) dx.

Proof. We may assume that K is 1 by A5Q2. Let € > 0 be given and P. be a partition of I x J such that

‘ﬂﬁm—/ﬂ<§

for all refinement P of P. and all Riemann sum corresponding to P. Let P! and P be partitions of I and

J respectively, so that
P.=P/ xP/

Let P! and P’ be refinements of P! and P/ respectively and for each a € P! and 8 € P chosoe z,, € I,
and yg € Jg, then the above inequality yields

5
> fewunllax - [ <3
(a,B)€PTx PJ IxJ
Then since p(Iy x Jg) = p(la)p(Jp), we get
€
S X faut) | i)~ [ r| <
a€P! \BeP’ IxJ

Fix P! and z, € I, let Q/ be a refinement of P/ such that

> f(@ayyp)ulJs) = hlza)| <

deos 2u(T)

93



for all @ € P;. Then combining this with the previous inequality, we have

Z Z f(ffmyﬁ)li(a]ﬁ) /J‘(Ia) - Z h(xa):u’(-[a)

aeP! \BeQ a€P;

< Z Z f(zmyﬂ)ﬂ(lﬂ)ﬂ(ja) - h(xa),u(la)
aeP! |peQ!
g

I3
<m0

Thus we know that

<e€

> hleautl) - [

aeP! IxJ

f

which implies that A is integrable and / h(z) dz = / I

Corollary 14.5

Let I = [a,b] X [¢,d] C R? and f : I — R be integrable. Suppose that the function

y— flz,y)  and  x= f(z,9)

are integrable for all z € [a,b] and y € [¢,d], then

/:/cdf(x,y)dyde/IfZ/cd/abf(x,y)dxdy

Example 14.5

Let I =[0,1] x [0,1] and let f(z,y) = y®e™¥". Then

1 1 ) 1 1 )
/ </ ylet dy) dx:/ </ yle™ daz) dy
0 0 0 0
1, 3.2y° 1
Yo
0 Y 0
1 2 (&
:/y(ey—l) dy=—-—-1
0 2

Corollary 14.6

Let ¢,% : [a,b] — R be continuous and let D = {(z,y) : € [a,b], and p(x) < y < ¥(x)} C R2
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Suppose that F': D — R is continuous, then

/Df:/ab (Lf:j)f(x,y) dy) dz

Proof. Notice that 0D has content zero because it is the finite union of graphs of continuous functions on
compact set. By Corollary (14.3) f is integrable. Let I = [a,b] x [¢, d] containing D and f the extension of
ftoIby f(z) =0 for x ¢ D. For z € [a,b] fixed, the function y — f(z,y) is continuous on [c,d] at ¢(z)

and ¥ (x). By Fubini
/sz/lfzfab/cdf(my)dydx
—/{lb/;;)f(x,y) dy dx

as desired. O
Lecture 35 - Friday, Jul 26

Example 14.6

Let D = {(z,y) : 1 <2 < 3,22 <y < 2%+ 1}. Compute the content (the area) of D.

Proof. We have by the above Corollary that

3 z2+1
/1:// ldyde =2
D 1 Jz2

Example 14.7

Compute / f where f(z,y,z) =y and D is the region bounded by the plane z =0, z =0, y = 0 and
D
r+y+z=1.

Proof. We can desciribe D as following:
0<zxz<1l 0<y<l—2 0<z<1l—-ax—y

Thus by Fubini’s Theorem and the above Corollary we have

N N 1 1—z l-xz—y 1
D 0,1]3 0,1] /(0,12 o Jo 0 24

Note: other ways to describe D could be, for example

0<z<1 0<z<1l—-—2 0<y<l—z—x
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14.7 Change of Variables
1

@ )2 defined on D where D = {(z,y) € R? : 1 < 2% +y* < 4}. We

Consider the function f(z,y) =

wish to compute / f.
D

The idea is to use polar coordinates.

Suppose we have g(r,0) = (rcos@,rsin6), then
D =g(A) where A={(r,0):1<r<20<6<2n}

Hence D is replaced by a rectangle.
Also

(foo)r6) = 5

so everything looks simple. Can we compute / f in terms of f o g?

D
Consider an infinitesimal pizza-like box in polar coordinate:

8, -+ df

Area = rydr dff + %dr? df

= rgdrdf

dr

T

The area of the shaded region would be

2 2
7‘2d9_(r er)demrdrde ifdr~0

/Df:/AfogdA:/Af(rcosﬂ,rsinﬂ)rdrdﬁ

Let @ # U C RY be open and let @ # K C U be compact with content. Suppose g : U — RY is
continuously differentiable and suppose that there exists Z C K with content zero such that

SO

1. g is one-to-one on K\Z;
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2. det Jy(x) # 0 for all z € K\Z,

then g(K) has content and for every f : g(K) — R continuous we have

/g(K)fZ/K(ng) |det J, |

where det J; : K — R is defined as z + det Jg(x).

Example 14.8

Back to the example we had at the start. Consider g(r,0) = (rcos@,rsinf), then g € C'(R?,R?). We

have

cos) —rsinf

Jg(r,0) = l 1 = det Jy(r,0) =r

sinf rcosf

Notice that if A = [1,2] x [0, 2], then det Jy(r,0) # 0 on A and g is injective on [1,2] x [0,27). Since
[1,2] x {27} has content zero, we apply the Change of Variable Theorem:

2 2 g 29
/fz/f(rcos@,rsin&)rdrd@z/ / —2d9dr:/ — dr=m
D A 1 Jo T 1 T

14.8 Integration with Cylindrical Coordinates

The sylindrical coordinates in R? are
r=rcosf y=rsinfd z==z

Thus
g:R¥ = R3 g(r,0,2) = (rcosf,rsind, z)

Then g is continuously differentiable and

cosf —rsinf 0
Jg(r,0,2) = |sinf rcosf 0
0 0 1

Thus det J,(r,0, z) = r.
Example 14.9

Find the volume of the region D in R? above the paraboloid z = x2 + 32, and inside the sphere
2?2 +y? + 22 =12

Lecture 36 - Monday, Jul 29

Proof. Write that = rcosf, y = rsinf and z = z. On the paraboloid, we have z = r? while on the sphere,
we have r = /12 — r2. We now want to find the the value of  where the paraboloid and the sphere meets:
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we have
r?nax + T?na.x = 12 :> rmax - \/g

Hence D = g(K) where g(r,0,z) = (rcosf,rsinf, z) and
K:{(r,ﬁ,z):0§7‘§\/§,0§0§27T,r2§z§ V12 —r2}

By the Change of Variable Theorem,

V3 2w V12—1r2 45
u(D):/l:/rdszdT:/ / / rdzd@dr:%'[———&—
D K 0 0 r2 4

14.9 Spherical Coordinates

In the system of spherical coordinates, we have the following coordinate axes:
1. p: the distance to the origin, so that 22 4+ y? + 22 = p?, (p > 0);
2. 0: “longitude” angle from the positive z-axis, (0 < 6 < 27);

3. : “latitude” angle from the positive z-axis, (0 < ¢ < 7).
Definition 14.9
We wish to denote (z,y, z) in terms of (p, 8, ):

Z = pcos¢y x = psinpcosf y = psinpsind

123/2
]

Consider g : R? — R? where
9(p,0, ) = (pcosp, psinpcos b, psin psin 0)
so g € C1(R3,R?) and g is injective on

{(0»9;80)1p>0,0§9<2ﬂ-70§@§ﬂ-}

Moreover
cosfsinp —psinfsing pcosfcosp
Jg(p,0,0) = |sinflsinp pcosfsing psinfcosep
cos 0 —psine
S0

det J,(p, 0, ) = —p?sin p

Hence det Jy(p,0,) #01if p # 0 and ¢ # 0, 7.
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Example 14.10: Example in Spherical Coordinates

Suppose p = r is a non-zero constant and ¢ is also a constant not equal to 0 or 7, then we get a cone

with vertex at the origin.

Example 14.11

Compute the volume of the sphere with radius r using spherical coordinates:

Proof. We have
D={(z,y,2) 1 a® +y* +2° =r%}

hence D = g(K), where g(p, 0, ¢) = (pcos g, psingcosd, psin psin §) and
K={(p,0,0):0<p<7r,0<6<2m,0< <7}

Then

' iy 27 An
“(D):/ 1=/ |deth|=/ / / p2sinp df do dr = —r®
D K 0o Jo Jo 3

Suppose I = [a1,b1] X -+ X [an,by] and @ = (aq,...,an), then
I:{a1+h1€1+-"aN+hN6NZOShkSEk fOI‘OSkSN}

where £ = by, — ay. If I is very small,

hy
gI)~=<gla)+Dga) | : | ,0<hy<tpfork=1,...,N
hn
where
| |
Dy(a) = Dg(a)el Dg(a)eN

Then column vectors are linearly independent, and they form a parallelepiped. We observe that

| |
p(par) = (det |¢1Dy(a)e; --- €nDg(a)en || = p(I)|det Jg(a)l

Thus
w(o(1)) ~ u(D)] det Jy(a)| = /I [det J,|
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In general, take partition P of I,

JEGIEDS /Mf =3 st |

a€P a€P 9(1a a€P

which yields /f o g|det Jg|.
I

1= 3 fantola) = 3 ) | aet,

aEP Ta
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