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Lecture 1 - Monday, May 6

Recall that if S1, . . . , Sn are sets, then the Cartesian Product S1 ×· · ·×Sn, also denoted as
n∏
i=1

Si,

is the set
S1 × · · · × Sn = {(x1, . . . , xn) | xj ∈ Sj , j = 1, . . . , n}

Definition 0.1: N-dimensional Euclidean Space, Vector

The N-dimensional Euclidean Space is the N -fold Cartesian product Rn = R × · · · × R. Element
x = (x1, . . . , xn) ∈ Rn is called a vector is simply a point in Rn. The numbers x1, . . . , xn are called
the coordinates.

Recall that Rn is a vector space over R with coordinate-wise operations: that is, if x = (x1, . . . , xn) ∈
Rn and y = (y1, . . . , yn) ∈ Rn and λ ∈ R, we have

x+ y = (x1 + y1, . . . , xn + yn)
λx = (λx1, . . . , λxn)

Definition 0.2: Zero Vector / Origin

The zero vector, or the origin, is the vector 0⃗ = (0, . . . , 0).

1 The Euclidean Inner Product and Distance in Rn

Example 1.1: Absolute Vector

In R, the distance of x ∈ R is from O in the absolute vector, |x| =

x if x ≥ 0
−x otherwise

.

O x

|x|

For x, y ∈ R, the distance of x and y is |x− y|.

Example 1.2: In R2

In R2, there is a natural notion of distance of a vector x = (x1, x2) to 0.

4



∥x∥

∥x∥ :=
√
x2

1 + x2
2

For x, y ∈ R2, we can define the distance of x and y by

∥x− y∥ =
√

(x1 − y1)2 + (x2 − y2)2

y

x

∥x− y∥ We can find that ∥x− y∥2 = ∥x∥2+∥y∥2 if and
only if the “dot product”, x ◦ y = x1y1 + x2y2

is zero, because x ◦ y = ∥x∥ · ∥y∥ cos θ (follow
from the law of cosine).

We extend this to Rn

1.1 Standard Inner Product

Definition 1.1: Euclidean Inner Product (Dot Product)

The Euclidean inner product (or dot product) on RN is the function

◦ : RN × RN → R

(x, y) →
N∑
i=1

xiyi

Proposition 1.1

The dot product satisfies that for all x, y ∈ RN and λ ∈ R, the following holds:

1. x ◦ x ≥ 0

2. x ◦ x = 0 if and only if x = 0

3. x ◦ y = y ◦ x

4. x ◦ (y + z) = x ◦ y + x ◦ z

5. (λx) ◦ y = λ(x ◦ y)

5



Result 1.1

Properties 3, 4 and 5 imply that ◦ is bilinear.

1.2 (Euclidean) Norm

Definition 1.2: Norm

For x = (x1, . . . , xN ) ∈ RN , we define the (Euclidean) norm of x by

∥x∥ =
√
x ◦ x =

√√√√ N∑
i=1

x2
i

Proposition 1.2

The function ∥·∥ : RN → [0,∞) satisfies

1. ∥x∥ ≥ 0

2. ∥x∥ = 0 if and only if x = 0

3. ∥λx∥ = |λ| ∥x∥

We would also like to show that this satisfies the triangle inequality:

∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ RN

For this we need the Cauchy-Schwartz inequality.

1.3 Cauchy-Schwartz Inequality

Theorem 1.1: Cauchy-Schwartz

For all x, y ∈ RN we have
|x ◦ y| ≤ ∥x∥ · ∥y∥

Moreover, equality holds if and only if x = ty or y = tx for some t ∈ R.

Proof. We may assume that both x and y are non-zero. For all t ∈ R, we know that

(x− ty) ◦ (x− ty) ≥ 0

then we have
p(t) = x ◦ x− 2t(x ◦ y) + t2(y ◦ y) ≥ 0

6



Notice that this is a quadratic function of t, which implies that p(t) has at most one root, thus

∆ =
[
2(x ◦ y)2]− 4(x ◦ x)(y ◦ y) ≤ 0

and the remaining follows naturally.

Corollary 1.1: Triangle Inequality

For all x, y ∈ RN we have
∥x+ y∥ ≤ ∥x∥ + ∥y∥

Proof. We simply have

∥x+ y∥2 = (x+ y) ◦ (x+ y)
= ∥x∥2 + ∥y∥2 + 2(x ◦ y)
≤ ∥x∥2 + ∥y∥2 + 2 ∥x∥ ∥y∥

= (∥x∥ + ∥y∥)2

thus completing the proof.

Lecture 2 - Wednesday, May 8

Theorem 1.2: Properties of the Euclidean Norm

The Euclidean norm ∥·∥ : RN → [0,∞) satisfies the following for all x, y ∈ RN and λ ∈ R:

1. Proposition 1.2

2. Triangle inequality
∥x+ y∥ ≤ ∥x∥ + ∥y∥

3. Reversed triangle inequality
| ∥x∥ − ∥y∥ | ≤ ∥x− y∥

Proof. exercise.

Definition 1.3: Distance

For x, y ∈ RN , define the distance of x and y by

d(x, y) := ∥x− y∥

Notice that for all z ∈ RN ,
d(x, y) ≤ d(x, z) + d(z, y)

7



which is a direct consequence of the Triangle Inequality 1.1.

2 Angles between Vectors in RN

In R2, we know that x ◦ y = ∥x∥ ∥y∥ cos θ, where θ is the angle between x and y.
In RN , Cauchy-Schwartz inequality 1.1 implies that for x, y ̸= 0, then

x ◦ y
∥x∥ ∥y∥

∈ [−1, 1]

we can find a unique θ ∈ [0, π] such that
cos θ = x ◦ y

∥x∥ ∥y∥

Definition 2.1: Angle between x and y

We define the angle between x and y as θ.

2.1 Orthogonal

Definition 2.2: Orthogonal

We say x and y are orthogonal if θ = π/2.

3 Topology on RN - Open Sets and Closed Sets

In topology, we study the notion of closeness (limits, convergence, continuity, etc.) through the collection
of open sets / closed sets.

Definition 3.1: Open Ball and Closed Ball

The open ball in RN of radius r > 0 centered at x ∈ RN is the set

Br(x) = {y ∈ RN : ∥x− y∥ < r}

Remark: the other notation is B(x, r).
The closed ball in RN of radius r > 0 centered at x ∈ RN is the set

Br[x] = {y ∈ RN : ∥x− y∥ ≤ r}

Example 3.1

1. In R, Br(x) is the open interval (x− r, x+ r). Similarly, Br[x] is the closed interval [x− r, x+ r].

2. In R2, we have

8



r
x

Br(x)

r
x

Br[x]

Definition 3.2: Open Set and Closed Set

1. We say that U ⊆ RN is open if for all x ∈ U , there exists ε > 0 (depending on x) such that
Bε(x) ⊆ U .

2. We say that F ⊆ RN is closed if its complement,

F c = {y ∈ RN : y /∈ F},

is open.

Result 3.1: “Clopen”

Notice that ∅ and RN are open; and they are also closed. They are known as clopen.

Proposition 3.1: Open Balls are Open, and Vice Versa

1. The open ball Br(x) is open.

2. The closed ball Br[x] is closed.

Proof. The proof consists of two parts:
(Part 1):
Let y ∈ Br(x), we want to find ε > 0 such that Bε(y) ⊆ Br(x). We know that for z ∈ RN

d(x, z) ≤ d(x, y) + d(y, z)

hence we can take ε = r − d(x, y), then ε > 0 and Bε(y) ⊆ Br(x).
(Part 2):
Use the Reversed Triangle Inequality:

| ∥x− z∥ | = ∥x− y + y − z∥ ≥ | ∥x− y∥ − ∥z − y∥ |

We want to show that
Br[x]c = {y ∈ RN : ∥y − x∥ > r}

is open. Choose y such that ∥y − x∥ > r. Let ε = ∥x− y∥ − r, so ε > 0. Also let z ∈ Bε(y), then we have

9



∥z − y∥ < ε, which implies that − ∥z − y∥ > −ε = r − ∥x− y∥. Therefore,

∥x− z∥ ≥ | ∥x− y∥ − ∥y − z∥ |

= | ∥x− y∥ − ∥z − y∥ |

> ∥x− y∥ + r − ∥x− y∥

= r

Hence z ∈ Br[x]c is needed wich means that Bε(y) ⊆ Br[x]c.

3.1 Permanence Properties of Open Sets

Theorem 3.1: Permanence Properties of Open Sets

1. The union of an arbitrary collection of open sets is open.
Precisely, if Λ are indices and {Eα | α ∈ Λ} are open sets, then

E ≡
⋃
α∈Λ

Eα

is open.

2. The intersect of a finite collection of open sets is open.

Proof. 1. Let x ∈ E, then there exists α ∈ Λ such that x ∈ Eα. Since Eα is open, then there exists some
ε > 0 such that

Bε(x) ⊆ Eα ⊆
⋃
α∈Λ

Eα = E

which implies that E is also open

2. Let E1, E2, . . . , Em be open sets in RN and we let E ≡
⋂m
i=1 Ei. Let x ∈ E. For i = 1, . . . ,m, we can

find εi > 0 such that Bε(x) ⊆ Ei. So we can set ε ≡ min{εi : i = 1, . . . ,m}. Then

Bε(x) ⊆
m⋂
i=1

Ei = E

giving that E is open.

Lecture 3 - Friday, May 10

Example 3.2

The intersection of an infinite collection of open sets need not to be open, Consider that for all m ≥ 1.
take Em ≡ B1/m(n), then Em is open, but the intersect is a single point n, which is indeed closed.

10



3.2 De Morgan’s Law

Theorem 3.2: De Morgan’s Law

Let {Eα : α ∈ Λ} be a collection of subsets of a set A, then(⋃
α∈Λ

Eα

)c
=
⋂
α∈Λ

Ecα(⋂
α∈Λ

Eα

)c
=
⋃
α∈Λ

Ecα

Corollary 3.1: Properties of Closed Sets

1. The intersection of an arbitrary collection of closed sets is closed

2. The union of a finite collection of closed sets is closed

Proof. This follows the De Morgan’s Law 3.2.

Example 3.3

The sphere
∂Br(x) = {y ∈ RN : ∥y − x∥ = r}

is closed because
∂Br(x) = Br[x] ∩ Br(x)c

Example 3.4

The union of an infinite collection of closed sets need not be closed: Take Fm = {1/m}
(i.e. (1/m, . . . , 1/m) ∈ RN ), then Fm is closed,
Exercise: Show that

⋃∞
m=1 Fm is not closed.

Proof. To show that
⋃∞
m=1 Fm is not closed, it suffices to show that the complement is not open. Consider

the point O = {0}, we can easily find that we are not able to construct an open ball that is contained in the
complement, thus completing the proof.

4 Sets that are neither closed not open

Discovery 4.1

In general, an arbitrary subset S of RN need not be closed nor open.
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Example 4.1

In R, consider (a, b].

Example 4.2

Let
S ≡ {(x, y, z) ∈ R3 : y2 + z2 = 1, x > 0}

then S is neither closed nor open.

Proof. 1. (not open)
Take p = (1, 0, 1) ∈ S, then for ε > 0, we claim that Bε(p) ∩ Sc ̸= ∅ (i.e. there are points in the open
ball around p but not in S). We can simple set the point to be q = (1, 0, 1 + ε/2).

2. (not closed)
Take p = (0, 0, 1) ∈ Sc, given that ε > 0, we want to show that Sc is not open. Take q = (ε/2, 0, 1),
then q ∈ S and q ∈ Bε(p), so Bε(p) ∩ S ̸= ∅ ⇒ Bε(p) ̸⊆ Sc.

4.1 Cluster Point

Definition 4.1: Cluster Point

1. A point p ∈ RN is called a cluster point (or accumulation point) of S if for every ε > 0, we
have

(Bε(p)\{p}) ∩ S ̸= ∅

Equivalently, for every open set U with p ∈ U , there exists x ∈ S ∩ U and x ̸= p.

2. We denote by S′ the set of all cluster points of S.

Example 4.3: Every p ∈ RN is a cluster point of QN

Every p ∈ RN is a cluster point of QN = {(q1, . . . , qN ) ∈ RN : qi ∈ Q, i = 1, . . . , N}.

Proof. To see this, let p = (p1, . . . , pN ) ∈ RN and ε > 0. By density of Q in R, for each i = 1, . . . , N ,
we can find ci ∈ Q, ci ̸= pi such that |pi − ci| < ε/

√
N , set c = (c1, . . . , cN ) ∈ QN , then

∥p− c∥ =

√√√√ N∑
i=1

(pi − ci)2 < ε

and p ̸= c. Hence c ∈ (Bε(p)\{p}) ∩ QN is needed.
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Example 4.4

Let S be a finite set,
S = {x1, . . . , xN} ∈ RN

then S has no cluster point.

Proof. To see this, take p ∈ RN and ε > 0 with

ε < min{∥p− x∥ : x ∈ S, x ̸= p}

4.2 Characterization of Closed Sets

Theorem 4.1: Characterization of Closed Sets

Let F ⊆ RN , TFAE

1. F is closed

2. F ′ ⊆ F

Proof. 1. (1 ⇒ 2)
Suppose F is closed. Let p ∈ F c, we have to show that p /∈ F ′. Since F is closed, F c is open, hence
there exists ε > 0 such that Bε(p) ⊆ F c. In particular,

Bε(p) ∩ F = ∅

giving that p /∈ F ′, we have F ′ ⊆ F .

2. (2 ⇒ 1)
Suppose F ′ ⊆ F , we will show that F c is open. Take p ∈ F c, then p /∈ F ′, so there exists ε > 0 such
that

(Bε(p)\{p}) ∩ F = ∅

Thus Bε(p) ∩ F = ∅. Since p ∈ F c, so Bε(p) ⊆ F c and thus F c is open.

4.3 Closure

Definition 4.2: Closure

Let S ⊆ RN , define the closure of S by S = S ∪ S′.

13



Lecture 4 - Monday, May 13

Proposition 4.1

Let S ⊆ RN . Then
S′ = S

′

In particular, we have S is closed.

Corollary 4.1

S is the smallest closed set contans S. i.e. if S ⊆ F and F is closed, then S ⊆ F .

S =
⋂

F ⊇S

F open

F

Definition 4.3: Boundary and Interior

Let S ⊆ RN ,

1. We say that a point p ∈ RN is a boundary point of S if for every ε > 0, we have

Bε(p) ∩ S ̸= ∅ & Bε(p) ∩ Sc ̸= ∅

The boundary, ∂S, is the set of all boundary points of S.

2. We say that a point p ∈ RN is an interior point of S if there exists ε > 0 such that Bε(p) ⊆ S.
The interior of S, denoted by S◦, is the set of all interior points of S.

Result 4.1

We have
S◦ ⊆ S ⊆ S

Example 4.5

Let S = (0, 1] ∪ {2}, we have

∂S = {0, 1, 2}

S′ = [0, 1]
S◦ = (0, 1)
S = [0, 1] ∪ {2}

14



Proposition 4.2

Let x ∈ RN and r > 0, then

1. ∂Br(x) = ∂Br[x] = {y ∈ RN : ∥y − x∥ = r}

2. Br(x) = Br[x]

Proof. 1. Let y ∈ RN with ∥y − x∥ = r. It suffices to show that for all ε > 0,

Bε(y) ∩ Br(x) ̸= ∅ & Bε(y) ∩ Br[x]c ̸= ∅

since Br(x) and Br[x]c are open. Let λ > 0, so we have

∥λ(y − x)∥ = λ ∥y − x∥ = λr

Set zλ = x + λ(y − x). Notice that if λ < 1, then zλ ∈ Br(x), and if λ > 1, then zλ ∈ Br[x]c. Take
0 < λ < 1 with 1 − λ < ε/r, then zλ ∈ Br(x) and

∥zλ − y∥ = ∥x+ λ(y − x) − y∥

= (1 − λ) ∥y − x∥

<
ε

r
· r = ε

To get zλ ∈ Bε(y) ∩ Br[x]c, take λ > 0 with λ− 1 < ε/r, then zλ ∈ Br[x]c and is above zλ ∈ Bε(y).

2. We know that
Br(x) = Br(x) ∪ Br(x)′

If p ∈ Br[x]c, then p /∈ Br(x)′, so
Br(x) ⊆ Br[x]

By part a), if p ∈ RN and ∥p− x∥ = r, then p ∈ ∂Br(x) and hence p ∈ Br(x), thus

Br[x] ⊆ Br(x)

Proposition 4.3

Let S ⊆ RN , then

1. S◦ is open, and
S◦ =

⋃
U⊆S

U open

U

2. S◦ = S\∂S

15



Proof. 1. Let x ∈ S◦, since x is an interior point, so we can find εx > 0 such that

Bεx
(x) ⊆ S

If y ∈ Bεx
(x), then there exists δ > 0 such that

Bδ(y) ⊆ Bεx(x) ⊆ S

So y is also an interior point. This gives that

Bεx
(x) ⊆ S◦

This shows that S◦ is open, and

S◦ =
⋃
x∈S◦

Bεx(x) ⊆
⋃

U⊆S

U open

U

Now let U ⊆ S, U open and let x ∈ U . Since U is open, there exists ε > 0 such that

Bε(x) ⊆ U ⊆ S

suggesting that x ∈ S◦, hence completes the proof.

2. Let x ∈ S◦, we want to show that x /∈ ∂S. We know there exists ε > 0 such that

Bε(x) ⊆ S

hence we have
Bε(x) ∩ Sc = ∅ =⇒ S◦ ⊆ S\∂S

On the other hand, let x ∈ S\∂S, hence we can find ε > 0 such that

Bε(x) ∩ Sc = ∅ =⇒ x ∈ S◦

Lecture 5 - Wednesday, May 15

Discovery 4.2

S◦ is the largest open set contained in S.

16



4.4 RN is the Disjoint Union

Theorem 4.2

Let S ⊆ RN , then RN is the disjoint union

RN = S◦ ⊔ ∂S ⊔ (Sc)◦

Remark: The symbol ⊔ implies that this is a disjoint union.

Proof. Clearly S◦ ∩ (Sc)◦ = ∅ since S◦ ⊆ S and Sc◦ ⊆ Sc, and if p ∈ S◦ ∪ (Sc)◦, then p /∈ ∂S, thus the
above union is disjoint. To see that RN = S◦ ∪ ∂S ∪ (Sc)◦, let x ∈ RN , if x ∈ S◦ ∪ (Sc)◦, we are done.
Otherwise given ε > 0, we have Bε(x) ∩Sc ̸= ∅ because x /∈ S◦ and Bε(x) ∩S ̸= ∅ because x /∈ (Sc)◦. Since
ε is arbitrary, thus we have x ∈ ∂S.

Corollary 4.2

For any S ⊆ RN , we have
S = S ∪ ∂S

Proof. Exercise.

5 Compactness

Compactness is an important concept in topology especially in connection with continuity.

Definition 5.1: Open Cover, Compact

1. Let S ⊆ RN . An open cover of S is a collection, g = {gα}α∈Λ, of open subsets of RN that
covers S. i.e.

S ⊆
⋃
α∈Λ

gα

2. We say that K ⊆ RN is compact if every open cover g = {gα}α∈Λ of K admits a finite subcover.
i.e. there exists a finite subcollection g′ = {gαi

: i = 1, . . . , n} of sets from g such that

K ⊆
n⋃
i=1

gαi

Example 5.1: Finite Sets Are Compact

If S = {x1, . . . , xn} is finite, then S is compact.

Proof. Let g = {gα}α∈Λ be an open cover of S. Since S ⊆
⋃
α∈Λ gα, for each i = 1, . . . , n, we can find αi ∈ Λ

such that xi ∈ gαi
. Set g′ = {gαi

: i = 1, . . . , n}, then g′ is a finite collection of sets from g that cover S,
thus S is indeed compact.

17



Example 5.2: Open Balls Are Not Compact

Let r > 0, x ∈ RN , then Br(x) is not compact.

Proof. We need to exhibit an open cover g = {gα}α∈Λ that admits no finite subcover. Let k ≥ 0 be such that
1/k < r. For each m ≥ k, we set gm = Br−1/m(x). Then each gm is open and we set g = {gm}m≥k. Then g

is a open cover of Br(x). We claim that g admits no finite subcover. SFAC that g′ = {gmi
: i = 1, . . . , l} is

a finite subover for Br(x). Let j be such that mj = max{mi : i = 1, . . . , l}. Then

Br(x) ⊆ gmj
= Br−1/mj

(x)

which is a contradiction because if u ∈ RN , ∥u∥ = 1, and let r − 1/mj < q < r, then z = x+ qu, z ∈ Br(x),
but z /∈ Br−1/mj

(x).

Proposition 5.1

Suppose K ⊆ RN is compact and F ⊆ K is closed, then F is compact.

Proof. Let g = {gα}α∈Λ be an arbitrary open cover of F , then

K ⊆ F ∪ F c ⊆

(⋃
α∈Λ

gα

)
∪ F c

so g = g ∪ {F c} is an open cover of K because F c is open. Since K is compact, g admits a finite subcover
g′ = {gαi

: i = 1, . . . , n}. Now

F = F ∩K ⊆ F ∩

(
n⋃
i=1

gαi

)

=
n⋃
i=1

F ∩ gαi

⊆
⋃

g∈g′,g ̸=F c

g

Setting g′ = g′\{F c}, we see that g′ is a finite subcover of F containing of sets from g.

Definition 5.2: Bounded

We will say that a set S ⊆ RN is bounded if there exists m ≥ 1 such that

S ⊆ Bm[0]

Theorem 5.1

Suppose K ⊆ RN is compact, then K is closed and bounded.

18



Proof. Suppose K is compact

1. Bounded:
For each m ≥ 1, let gm = Bm(0), then gm ⊆ gm+1, and gm is open. Let g = {gm}m≥1, then g is now
an open cover of K. By compactness of K, g admits a fintie subcover g′ = {gmi : i = 1, . . . , l}. Let j
be such that mj = max{mi : i = 1, . . . , l}. Then K ⊆ gmj

⊆ Bmj
[0].

2. Closed:
For each x ∈ Kc, we need to find ε > 0 such that Bε(x) ⊆ Kc. For each y ∈ K, we set εy = ∥x− y∥ /2,
then εy > 0 because x /∈ K. By the reverse triangle inequality, we have

Bεy (x) ∩ Bεy (y) = ∅

For each y ∈ K, we set gy = Bεy
(y) and let

g := {gy : y ∈ K}

Then g is an open cover of K. By compactness, we can find a finite subcover from g, say g′ = {gyj :
j = 1, . . . , n}. Let ε = min{εyj : j = 1, . . . , n}.

Lecture 6 - Friday, May 17

Discovery 5.1

If F ⊆ RN is closed and K ⊆ RN is compact (so it’s also closed and bounded), then F ∩K is compact,
since F ∩K is closed (3.1) and F ∩K ⊆ K (5.1).

Theorem 5.2

If E ⊆ K is an infinite set and K is compact, then E has a cluster point in K.

Proof. SFAC that E has no cluster point in K. Since E ⊆ K, by A01-Q4, we have

E′ ⊆ K ′ ⊆ K

because K is closed. Thus we must have E′ = ∅. Then E is closed since E′ = ∅ ⊆ E. It follows that E is
compact (5.1). Now if p ∈ E, it is clear that p /∈ E′, so we get εp > 0 such that

Bεp(p) ∩ E = {p}

Then the open cover {Bεp
(p) : p ∈ E} admits no finite subcover because E is infinite.

5.1 Heine-Boul Theorem

We wish to prove the converse, that is, we want to show that if K ⊑ RN is closed and bounded, then K is
compact.
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Theorem 5.3: Nested Interval Principle

Recall the nested interval principle:
If Im = [am, bm] ⊆ R is a nested sequence of closed and bounded intervals in R, then

∞⋂
m=1

Im ̸= ∅

i.e. Im ⊇ Im+1 ⊇ · · · for all m. Moreover, if limm(bm − am) = 0, then

∞⋂
m=1

= {z}

is a single point.

Definition 5.3: N-cell

For each j = 1, . . . , N , let aj , bj ∈ R with aj < bj . We call the Cartesian product

I = [a1, b1] × · · · × [aN , bN ]

an N -cell.

Theorem 5.4

Let I1 ⊇ I2 ⊇ · · · be an increasing sequence of N -cells, then

∞⋂
m=1

Im ̸= ∅

Moreover, if limm ∥bm − am∥ = 0, then
∞⋂
m=1

Im = {z}

is a single point, where here am, bm ∈ RN and Im = [am,1, bm,1] × · · · × [am,N , bm,N ].

Proof. Since Im ⊇ Im+1, we have
[am,j , bm,j ] ⊇ [am+1,j , bm+1,j ]

By nested interval principle in R, there exists

zj ∈
∞⋂
m=1

[am,j , bm,j ] j = 1, . . . , N

We set z = (z1, . . . , zN ), then z ∈
⋂∞
m=1 Im. If limm→∞ ∥bm − am∥ = 0, then since (bm,j − am,j) ≤
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∥bm − am∥, we deduce that limn→∞(bm,j − am,j) = 0. Hence

∞⋂
m=1

[am,j , bm,j ] = {zj}

Then
∞⋂
m=1

Im = {z}

5.2 N-cell is Compact

Theorem 5.5

Let I = [a1, b1] × · · · [aN , bN ] be an N -cell, then I is compact.

Theorem 5.6: Heine-Boul Theorem

Let K ⊆ RN , then TFAE

1. K is compact,

2. K is closed and bounded.

Proof. We have shown that compact implies closed and bounded (5.1). Therefore it suffices to show the
other direction: Suppose K is closed and bounded. Since it is bounded, we find that there exists some
M > 0 such that K ⊆ BM [0]. Then if x ∈ K, we have |xj | ≤ ∥xj∥ ≤ M and so K is contained in the N -cell

IM = [−M,M ] × · · · × [−M,M ]︸ ︷︷ ︸
N terms

By the previous theorem 5.5, Im is compact, and because K ⊆ IM and K is closed, thus K is compact
(5.1).

Lecture 7 - Tuesday, May 21

LMAO Camila didn’t show up to the class today.

Lecture 8 - Wednesday, May 22

Proof. This is the proof of Theorem (5.5).
Let a = (a1, . . . , aN ) and b = (b1, . . . , bN ). Set

δ = ∥b− a∥ =

√√√√ N∑
i=1

(bi − ai)2

Notice that if x, y ∈ I, then ∥x− y∥ ≤ δ. SFAC that I is not compact, then there exists an open cover
g = {gα}α∈Λ for I that admits no finite subcover.
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1. Step 1:
For each j = 1, . . . , N , let cj = aj+bj

2 . Then the intervals [aj , cj ], [cj , bj ] gives 2N N -cells,

J1 = {I1,l : l = 1, . . . , 2N}

such that I =
⋃2N

l=1 I1,l, where each N -cell I1,l is the Cartesian product

[d1, e1] × · · · × [dN , eN ]

with
[dj , ej ] ∈ {[aj , cj ], [cj , bj ]}

It follows that there is some l ∈ {1, . . . , 2N} such that the N -cell I1,l connot be covered by a finite
collection of sets from g. Let I1 be such an N -cell. Notice that

(a) I ⊇ I1

(b) I1 cannot be covered by a finite collection of sets from g

(c) Let a1 = (a11, . . . , a1N ) and b1 = (b11, . . . , b1N ) be such that

I1 = [a11, b11] × · · · × [a1N , b1N ]

then if x, y ∈ I1,

∥x− y∥ ≤ ∥b1 − a1∥ =

√√√√ N∑
i=1

(b1i − a1i)2 = δ

2

2. Step 2:
Induction. Suppose n ≥ 1 is fixed and I ⊇ I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · are N -cells where each Il cannot
be covered by a finite collection of sets from g, and if x, y ∈ Il, we have ∥x− y∥ ≤ δ/2l. Repeat the
argument in step 1 to get an N -cell In+1 ⊆ In that cannot be covered by a finite collection of sets from
g and x, y ∈ Il+1, then ∥x− y∥ ≤ δ/2n+1. We have proved the existence of a sequence I, I1, I2, . . . with
the following properties:

(a) I ⊇ I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·

(b) Each In cannot be covered by a finite collection of sets from g

(c) If x, y ∈ In, then ∥x− y∥ ≤ δ/2n

By Theorem 5.3 we can find z ∈
⋂∞
n=1 In. Since z ∈ I ⊆

⋃
α∈Λ gα, there exists some β ∈ Λ such that

z ∈ gβ . Because gβ is open, there exists ε > 0 such that Bε(z) ⊆ gβ . Let n be such that δ/2n < ε. We
know that z ∈ In and if y ∈ In, we have

∥y − z∥ ≤ δ

2n < ε

giving that y ∈ Bε(z). This shows that

In ⊆ Bε(z) ⊆ gβ

which is a contradiction because In can be covered by the singleton {gβ} ∈ g.
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6 Connected Sets

Intuitively, a set S ⊆ RN is connected if any two points x, y ∈ S can be connected by a continuous path
that is completely contained in S.

We define connected sets using topology.

Definition 6.1: Disconnection and Connection

Let S ⊆ RN be a set. We say that a pair of open set {U, V } ∈ RN is a disconnection for S if

1. S ⊆ U ∪ V

2. S ∩ U ̸= ∅ and S ∩ V ̸= ∅

3. S ∩ U ∩ V = ∅

If a disconnection exists, we say that S is disconnected. Otherwise we say S is connected.

Example 6.1

Z is not connected, set U = (−∞, 1/2) and V = (1/2,+∞).
Q is not connected, set U = (−∞,

√
2) and V = (

√
2,+∞)

6.1 Interval is Connected

Theorem 6.1

The interval [0, 1] is connected.

Lecture 9 - Friday, May 24

Proof. SFAC that {U, V } is a disconnection. WLOG we may assume 0 ∈ U . Since U is open, there exists
some ε0 > 0 such that (−ε0, ε0) ⊆ U . We may assume ε0 < 1. Then [0, ε0) ⊆ U . It follows that

{0 < ε < 1 : [0, ε) ⊆ U}

is not empty. We let t0 = sup{0 < ε < 1 : [0, ε) ⊆ U}. Notice that t0 ≤ 1.

1. Claim 1 : [0, t0) ⊆ U .
Indeed, for each n ≥ 1, let rn > 0 with t0 − 1/n < rn < t0 such that [0, rn) ⊆ U . We then have

[0, t0) =
∞⋃
n=1

[0, rn) ⊆ U
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2. Claim 2 : t0 /∈ U .
SFAC t0 ∈ U , thus we obtain that t0 ̸= 1 because if t0 = 1 ∈ U , then

U ⊇ [0, t0) ∪ {t0}

= [0, 1) ∪ {1}

= [0, 1]

which contradicts property (c) as we simultaneously have

U ∩ [0, 1] ∩ V = ∅ [0, 1] ∩ V ̸= ∅

Therefore, there exists δ > 0 such that (t0 − δ, t0 + δ) ⊆ U . We may assume t0 + δ < 1. Then we know
that

[0, t0 + δ) ⊆ [0, t0) ∪ [t0, t0 + δ) ⊆ U

contradicting the definition of t0.

Therefore we deduce that t0 ∈ V . Since V is open, we can find δV > 0 such that (t0 − δV , t0 + δV ) ⊆ V . But
then take some 0 < r < t0, r > t0 − δV , then r ∈ [0, 1], and r ∈ U by claim 1, while r ∈ V . Contradiction
(see theorem 6.1).

6.2 Higher-Dimensional Examples

Definition 6.2: Convex

We say that C ⊆ RN is convex if for all x, y ∈ C, we have

tx+ (1 − t)y ∈ C ∀ t ∈ [0, 1]

In other words, C contains the line segment between any two points in C.

6.3 Convex is Connected

Theorem 6.2

Any convex set C ⊆ RN is connected.

Proof. SFAC C ∈ RN is not connected. Let {U, V } be a disconnection. Let x ∈ C ∩ U and let y ∈ C ∩ V .
Define

U0 := {t ∈ R : tx+ (1 − t)y ∈ U}

V0 := {t ∈ R : tx+ (1 − t)y ∈ V }

we will show that {U0, V0} gives a disconnection for [0, 1].
Claim: U0 and V0 are open.
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Let t0 ∈ U0, so x0 = t0x+ (1 − t0)y ∈ U . Since U is open, there exists ε > 0 such that

Bε(x0) ⊆ U

For each t ∈ R, we set zt := tx+ (1 − t)y. Notice that

∥zt − x0∥ = ∥tx+ (1 − t)y − (t0x+ (1 − t0)y)∥
≤ ∥(t− t0)x∥ + ∥(t0 − t)y∥

= |t− t0| ∥x∥ + |t− t0| ∥y∥

Let δ > 0, δ = ε
∥x∥+∥y∥ , then if t ∈ (t0 − δ, t0 + δ), we get ∥zt − x0∥ < ε, which suggests that

zt ∈ Bε(x0) ⊆ U

This shows that (t0 − δ, t0 + δ) ⊆ U0, and hence U0 is open. Similar argument could also show that V0 is
open. Then {U0, V0} is a disconnection for [0, 1] because

1. [0, 1] ⊆ U0 ∪ V0.
If t ∈ [0, 1], zt = tx+ (1 − t)y ∈ C because we know that C is convex, thus zt ∈ U or zt ∈ V . So that
zt ∈ U ∪ V .

2. [0, 1] ∩ U0 ̸= ∅ because 1 ∈ U0, and [0, 1] ∩ V0 ̸= ∅ because 0 ∈ V0.

3. [0, 1] ∩ U0 ∩ V0 = ∅.
Indeed, if t ∈ [0, 1] ∩ U0 ∩ V0, then zt ∈ U ∩ V ∩ C (in C because C is convex). This cannot happen
because {U, V } is a disconnection for C. Hence [0, 1] ∩ U0 ∩ V0 = ∅.

Thus {U, V } is a disconnection for [0, 1]. Contradiction.

Corollary 6.1

The following subsets of RN are connected:

1. RN

2. open balls

3. line segments

4. subspaces

6.4 Only RN and ∅ are Clopen

Corollary 6.2

The only clopen sets in RN are RN and ∅.

Proof. Exercise.
My Attempt:
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Suppose there exists U ⊆ RN with U ̸= ∅ and U ̸= RN such that U is clopen. Thus we can find that
V := RN\U is also clopen. Notice that thus we have

1. RN ⊆ U ∪ V

2. U ∩ RN ̸= ∅ and V ∩ RN ̸= ∅

3. RN ∩ U ∩ V = ∅

which implies that RN is disconnected. Contradiction.

Lecture 10 - Monday, May 27

7 Sequence and Limits in RN

Definition 7.1: Sequence

A sequence in RN is a function f : N → RN .
Notation: we write xn = f(n), and we write (xn), (xn)∞

n=1, or (xn)n∈N for the sequence.

Definition 7.2: Limit

We say that a sequence (xn) in RN converges to a ∈ RN if for every ε > 0, there exists M ∈ R such
that for all n ≥ M

∥xn − a∥ < ε

or equivalently,
xn ∈ Bε(a)

We call a the limit of (xn) and say that (xn) is convergent.
Notation: we write a = limn→∞ xn, or xn → a.

Discovery 7.1

Notice that (xn) converges to a if and only if for every open U ⊆ RN with a ∈ U , there exists
MU ∈ N such that xn ∈ U for all n ≥ MU .

Definition 7.3: Bounded

Let (xn) be a sequence in RN , we say that (xn) is bounded if its set of terms {xn : n ∈ N} is a
bounded set.
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7.1 Bounded if (Cauchy iff Convergent)

Definition 7.4: Cauchy

We say (xn) is Cauchy if for every ε > 0 there exists M ∈ N such that

∥xn − xm∥ < ε for all n,m ≥ M

Discovery 7.2

If (xn) is a sequence in RN , then

(xn) is convergent ↔ (xn) is cauchy → (xn) is bounded

Proposition 7.1

Let (xn) be a sequence in RN , then

1. if (xn) is convergent, then it is cauchy;

2. if (xn) is cauchy, then it is bounded.

Proof. 1. Suppose (xn) is convergent and let a := limn→∞ xn. Let ε > 0 and let M ∈ N such that
∥xn − a∥ < ε/2 for all n > M . For m,n > M , we have

∥xn − xm∥ ≤ ∥xn − a∥ + ∥a− xm∥

= ε

2 + ε

2 = ε

thus the sequence (xn) is cauchy.

2. Suppose (xn) is cauchy. For ε = 1, let M ∈ N be such that ∥xn − xm∥ = 1 for all m,n > M , then

∥xn∥ = ∥xn − xM + xM∥ ≤ ∥xn − xM∥ + ∥xM∥

Take R := max{∥x1∥ , ∥x2∥ , . . . , ∥xM−1∥ , 1 + ∥xM∥}, then ∥xn∥ ≤ R for all n ∈ N, suggesting that
(xn) is bounded.

Proposition 7.2

A sequence (xn) in RN can have at most one limit.

Proof. Suppose (xn) is convergent. SFAC that a, b ∈ RN , a ̸= b with a = limn→∞ xn = b. Since a ̸= b, we
have ∥a− b∥ ≠ 0, and we set ε = ∥a− b∥ /2. Then

Bε(a) ∩ Bε(b) = ∅
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Let Ma ∈ N be such that xn ∈ Bε(a) for all n ≥ Ma, and let Mb ∈ N be such that xn ∈ Bε(b) for all n ≥ Mb,
then for n ≥ M := max{Ma,Mb}, we have

x ∈ Bε(a) ∩ Bε(b) = ∅

which is a contradiction.

8 Sequential Characterization of Compact Set

Proposition 8.1

Let S ⊆ RN and p ∈ RN , then TFAE:

1. p ∈ S′;

2. There exists (xn) ∈ S with xn ̸= xm if n ̸= m such that limn→∞ xn = p.

Proof. A2.

Definition 8.1: Subsequence

A subsequence of a sequence (xn) in RN is a sequence of the form (xnk
)∞
k=1 with

n1 < n2 < n3 < · · · < nk < · · ·

Example 8.1

Consider the sequence in R3 such that

xn =
(

(−1)n, cos
(πn

2

)
,

1
n

)
notice that it is not convergent, but it is bounded and has convergent subsequences. In particular, as
for an instance, the following subsequences are convergent:

nk = 2k + 1
nk = 4k

Proposition 8.2

If (xn) converges to a ∈ RN , then every subsequence also converges to a.

Proof. Let a = limn→∞ xn and let (xnk
) be a subsequence. Let ε > 0 and let M ∈ N be such that

∥xn − a∥ < ε for all n > M
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Let k0 ∈ N be such that nk0 ≥ M . Then

k ≥ k0 ⇒ nk ≥ nk0 ≥ M

and so ∥xnk
− a∥ < ε, which implies that (xnk

) converges to a.

8.1 Compact and Sequential Compact (in Metric Space RN)

Theorem 8.1

Let K ⊆ RN , TFAE:

1. K is compact;

2. Every sequence (xn) in K has a subsequence that converges to a point in K.

Proof. 1. (1) =⇒ (2)
Let (xn) be a sequence in K, we need to consider two cases:

(a) Case 1 : E := {xn : n ∈ N} is finite.
Then there exists a ∈ E such that the set {n ∈ N : xn = a} is infinite. We build a subsequence
(xnk

) of (xn) converging to a ∈ K as following: We set

A1 = {n ∈ N : xn = a}

then A1 ̸= ∅, and we set n1 = minA1. Let

A2 = {n ∈ N : n > n1, xn = a}

then A2 ̸= ∅, and we set n2 = minA2. Proceeding with the argument inductively we obtain

n1 < n2 < · · · < nk < · · ·

such that xnk
= a for all k. Thus (xnk

) definitely converges to a.
(b) Case 2 : E := {xn : n ∈ N} is infintie.

In this case, since K is compact, then by Theorem (5.2), E has a cluster point a ∈ K. Then
we build a subsequence (xnk

) converging to a as following: For ε1 = 1, take xn1 ∈ Bε1(a); For
ε2 = 1/2, take n2 > n1 and xn2 ∈ Bε2(a). Continue with the argument inductively, then for
εk = 1/n, nk > nk−1 with xnk

∈ Bεk
(a).

Lecture 11 - Wednesday, May 29

2. (2) =⇒ (1)
SFAC K is not compact, then K is either not bounded or not closed.

(a) if K is not bounded
So for each n ∈ N, we can find xn ∈ K with ∥xn∥ > n. The sequence (xn) has no bounded
subsequence, which is hence not convergent. Hence we conclude that K must be bounded.
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(b) if K is not closed
By the characterization of closed set 4.1, there exists p ∈ K ′ with p /∈ K. By A02-Q4, there
exists (xn), a sequence in K, converges to p. Then every subsequence also converge to p /∈ K by
Proposition 8.2, contradicting 2), so k must be clsoed.

Theorem 8.2: Bolzano-Weierstrass Theorem in RN

Let (xn) be a bounded sequence in RN , then (xn) has a convergent subsequence.

Proof. Suppose (xn) is bounded, say (xn) ⊆ BR[0]. Since BR[0] is closed and bounded, it is compact. Hence
xn has a convergent subsequence by Theorem 8.1.

Proof. This is an alternative proof
Using BW 8.2 in R, since

xn = (xn,1, xn,2, . . . , xn,N )

For the first sequence, find a convergent subsequence (xnk,1), and take (xnk
). Using this subsequence, at

the second coordinate find a convergent subsequence of (xnk
), denoted as (xnkj

,2), to get (xnkj
). Continuing

this argument for each coordinate.

Discovery 8.1

This proof is called the “Diagonal Argument”.

Theorem 8.3: Completeness of RN

Every cauchy sequence in RN is convergent.

Proof. We know that by Proposition 7.1 every cauchy sequence is bounded. Let (xn) be a cauchy sequence
in RN . It follows by BW Theorem (8.2) in RN that (xn) has a convergent subsequence (xnk

). Let a =
limk→∞ xnk

. We will show that (xn) converges to a. Let ε > 0 and let k0 ∈ N be such that ∥xnk
− a∥ < ε/2

for all k ≥ k0. Let M ∈ N be such that ∥xn − xm∥ < ε/2 for all n,m ≥ M . Let n ≥ M , let k be such that
k ≥ k0 and nk ≥ M (e.g. k ≥ max{k0,M}). Then

∥xn − a∥ = ∥xn − xnk
+ xnk

− a∥

≤ ∥xn − xnk
∥ + ∥xnk

− a∥

= ε

2 + ε

2 = ε

30



9 Limits of Function and Continuity

9.1 Limit

Let ∅ ̸= D ⊆ RN and f : D → RM a function, given x0 ∈ D′, we wish to study the behaviour of f around
x0.

Definition 9.1: Limit

Let ∅ ̸= D ⊆ RN and f : D → RM a function, given x0 ∈ D′. We say that L ∈ RM is the limit of
f as x → x0, written L = limx→x0 f(x), if for every ε > 0, there exists δ > 0 such that if x ∈ D and
0 < ∥x− x0∥ < δ, then ∥f(x) − L∥ < ε.
If there is no L ∈ RM such that the above happens, then we say that the limit of f at x0 does not
exist.

Theorem 9.1

Let ∅ ̸= D ⊆ RN and f : D → RM a function, given x0 ∈ D′. TFAE:

1. L = limx→x0 f(x)

2. For every sequence (xn) in D\{x0} with xn → x0, the sequence (f(xn)) converges to L

3. For every neighbourhood U of L, there exists an open neighbourhood V of x0 such that

(V ∩D)\{x0} ⊆ f−1(U) := {x ∈ D : f(x) ∈ U}

Definition 9.2: Neighbourhood

U is a neighbourhood of x0 if there exists ε > 0 such that Bε(x0) ⊂ U .

Proof. 1. (1 =⇒ 2)
Let (xn) be a sequence in D\{x0} converging to x0. Let ε > 0 be given. Then there exists δ > 0 such
that if x ∈ D, 0 < ∥x− x0∥ < δ, then ∥f(x) − L∥ < ε. Let M ∈ N be such that x0 ∈ Bδ(x0) for all
n ≥ M . Then ∥f(xn) − L∥ < ε, giving that (f(xn)) converges to L.

2. (2 =⇒ 1)
SFAC L ̸= limx→x0 f(x), then there exists ε > 0 such that for every δ > 0, we can find xδ ∈ D with
0 < ∥xδ − x0∥ < δ such that

∥f(xδ) − L∥ > ε

For δ = 1, find x1 ∈ B1(x0)\{x0}, x1 ∈ D with ∥f(x1) − L∥ > ε. For δ = 1/n, find xn ∈ D,
xn ∈ B1/n(x0)\{x0} with ∥f(xn) − L∥ > ε. The corresponding sequence (xn) ⊆ D\{x0} converges to
x0, but (f(xn)) does not converge to L. Contradiction.

Lecture 12 - Friday, May 31
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3. (1 =⇒ 3)
Suppose (1) holds and let U be an open neighbourhood of L. Let ε > 0 such that Bε(L) ⊆ U . By
(1), there exists δ > 0 such that if x ∈ D and 0 < ∥x− x0∥ < δ, then ∥f(x) − L∥ < ε, which further
implies that f(x) ∈ Bε(L). Set V := Bδ(x0), then

(V ∩D)\{x0} ⊂ f−1 (Bε(L)) ⊂ f−1(U)

4. (3 =⇒ 1)
Let ε > 0. Set U := Bε(L). By (3) we can find an open neighbourhood V of x0 such that

(V ∩D)\{x0} ⊂ f−1(U)

Let δ > 0 be such that Bδ(x0) ⊂ V , then if x ∈ Bδ(x0) ∩D, x ̸= x0, then

x ∈ (V ∩D)\{x0} ⇒ x ∈ f−1(U)

Notice: If D ⊂ R, x approaches x0 either from the left or from the right. In RN , N ≥ 2, there are
many different ways x can approach x0.

Example 9.1

Consider D = R2\{(0, 0)}, f : D → R, f(x, y) = xy/(x2 + y2) and x0 = (0, 0). Let (xn) in D\{x0},
xn = (1/n, 1/n), then xn → (0, 0) and f(xn) → 1/2. Take xm = (1/m, 1/m2), compute to find that
f(xm) → 0. We conclude that by the Sequential Characterization ((2) of 9.1) that the limit of f at x0

does not exist.

Example 9.2

Let D = R2\{(0, 0)}. Let f : D → R, f(x, y) = x4/(x2 + y2) and x0 = (0, 0). We claim that

lim
(x,y)→(0,0)

f(x, y) = 0

Assume x ̸= 0, then f(x, y) = x2

1+y2/x2 . We have 1 + y2/x2 ≥ 1, hence 1
1+y2/x2 ≤ 1, giving that

f(x, y) = x2

1+y2/x2 ≤ x2. Thus given ε > 0, take δ =
√
ε, thus if ∥(x, y)∥ < δ, we have x2 < ε.

9.2 Continuity

Definition 9.3: Continuous

Let D ⊆ RN , f : D → RM be a function. We say that f is continuous at x0 ∈ D if for every ε > 0
there exists δ > 0 such that if x ∈ D and ∥x− x0∥ < δ we have ∥f(x) − f(x0)∥ < ε. We say that f is
continuous on D if f is continuous at every point x0 ∈ D.
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Discovery 9.1

1. Continuity only makes sense at a point x0 ∈ D.

2. We say that a point x0 ∈ D is isolated if there exists δ > 0 such that Bδ(x0) ∩ D = {x0} (e.g.
x0 ∈ D\D′). If x0 ∈ D is an isolated point, then every function f : D → RM is continuous at x0.

Theorem 9.2

Let f : D → RM be a function x0 ∈ D ∩D′, then f is continuous at x0 if and only if limx→x0 f(x) =
f(x0).

9.3 Properties of Continuous Functions

Proposition 9.1

Let D ⊆ RN and let f, g : D → RM , ϕ : D → R. Suppose f, g and ϕ are continuous at x0 ∈ D, then

f + g : D → RM

x 7→ f(x) + g(x)
f · g : D → RM

x 7→ f(x) · g(x)
ϕf : D → RM

x 7→ ϕ(x) · f(x)

where the second is dot product and the third is scalar multiplication, are continuous.

Proof. Exercise. (Use, for example, f(xn) → f(x0) if and only if f(xn)j → f(x0)j for j = 1, . . . ,M).

Proposition 9.2

Let f1 : D1 → RK , D1 ⊆ RN and f2 : D2 → RK , D2 ⊆ RM . Suppose f1(D1) ⊆ D2. If f1 is continuous
at x0 ∈ D1 and f2 is continuous at f1(x0), then f2 ◦ f1 : D1 → RM , x 7→ f2(f1(x)) is continuous at x0.

Proof. Let (xn) be a sequence in D1 converging to x0. We need to show that

lim
n→∞

(f2 ◦ f1)(xn) = f2(f1(x0))

Since f1 is continuous at x0, we have (f1(xn)) converges to f1(x0). Because f2 is continuous at f1(x0) and
(f1(xn)) → f1(x0), we get

lim
n→∞

f2(f1(xn)) = f2(f1(x0))
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Proposition 9.3

Let f : D → RM , D ⊆ RN , be a function. For each j = 1, . . . ,M , let fj : D → R be jth component of
f , so that

f(x) = (f1(x), f2(x), . . . , fM (x))

for all x ∈ D. Then f is continuous at x0 if and only if fj is continuous at x0 for each j.

Proof. Exercise.

Example 9.3

For j ∈ {1, . . . , N}, then the function πj : RN → R, (x1, . . . , xN ) → xj (projectino onto the jth

coordinate) is continuous. Then every function f : RN → R, f(x1, . . . , xN )xn1
1 · · ·xnN

M , nj ≥ 0, j =
1, . . . , N is continuous.

Example 9.4

The function f : R2 → R, f(x, y) = xy2

x2+y4+π is continuous on R2. Indeed, f = f1 · f2, for f1 = xy2 is
continuous and f2 = 1

x2+y4+π is continuous. f2 is continuous because f2(x, y) = g2 ◦ g1 for g1(x, y) =
x2 + y4 + π ⊆ R\{0} and g2 : R\{0} → R, t 7→ 1/t are continuous.

Example 9.5

The function f : R2 → R3

f(x, y) =
(

cos
(

xy2

x2 + y4 + π

)
, sin

(
xy2

x2 + y4 + π

)
, ex+y

)
is continuous on R2 since each composition f1, f2, f3 of f is continuous on R.

Global Properties of Continuity

Theorem 9.3

Let ∅ ̸= D ⊆ RN , f : D → RM be a function, TFAE:

1. f is continuous on D;

2. For every U ⊆ RM open, there exists V ⊆ RN open such that f−1(U) = V ∩D;

3. For every F ⊆ RM closed, there exists G ⊆ RN closed such that f−1(F ) = G ∩D.
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Proof. 1. (1) =⇒ (2)
Suppose f is continuous on D and let U ⊆ RM . We claim that for each x ∈ f−1(U), there exists an
open neighbourhood Vx of x such that

Vx ∩D ⊆ f−1(U)

Indeed, in case that x ∈ D is an isolated point, let δx > 0 be such that Bδx(x) ∩ D = {x}, set
Vx = Bδx(x). If x ∈ D ∩ D′, then limy→x f(y) = f(x). By Theorem (9.1, (1) → (3)), there exists an
open neighbourhood Vx of x such that

(Vx ∩D)\{x} ⊆ f−1(U)

and hence Vx ∩D ⊆ f−1(U). Set V =
⋃
x∈f−1(U) Vx, then V is open in RM and

f−1(U) ⊆
⋃

x∈f−1(U)

Vx ∩D ⊆ f−1(U)

giving that f−1(U) = V ∩D.

2. (2) =⇒ (1)
Let x0 ∈ D ∩ D′, we apply Theorem (9.1, (3) → (1)). Let U be an open neighborhood of f(x). We
know that there exists V ⊆ RN open such that V ∩D = f−1(U). Then V is open neighborhood of x
since x ∈ f−1(U) and (V ∩D)\{x} ⊆ f−1(U). By Theorem (9.1, (3) → (1)), limy→x f(y) = f(x), and
so f is continuous at x.

3. (2) =⇒ (3)
Suppose F ⊆ RM is closed. Then F c is open. By assumption, there exists V ⊆ RN open such that

f−1(F c) = V ∩D

Now we use that f−1(F c) = f−1(F )c ∩D. Hence f−1(F )c ∩D = V ∩D. Taking complement and then
the intersection with D yields f−1(F ) = V c ∩D. Setting G := V c gives the result.

4. (3) =⇒ (2)
Follows a similar proof as above.

9.3.1 Example and Application

Example 9.6

Prove that the set F ⊆ R4,

F =
{

(x, y, z, w) : ex+y sin(zw2) ∈ [0, 2], x2 + w2 + z3 − y4 ∈ [0, 2024]
}

is clsoed

35



Proof. Let f : R4 → R2:
f(x, y, z, w) =

(
ex+y sin(zw2), x2 + w2 + z3 − y4)

then f is continuous on R4, we have

F = f−1(F ′) where F ′ = [0, 2] × [0, 2024]

It follows from the above Theorem (9.3, 1 → 3) that F is closed.

9.4 Continuity and Compactness

Theorem 9.4

Let ∅ ̸= K ⊆ RN be compact and f : K → RM be continuous on K, then f(K) is compact.

Proof. Let U = {Uα}α∈Λ be an open cover of f(K). By Theorem (9.3) for each α ∈ Λ, there exists Vα ⊆ RN

open such that Vα ∩K = f−1(Uα). Set V = {Vα}α∈Λ, then

K = f−1(f(K)) = f−1

(⋃
α∈Λ

Uα

)
=
⋃
α∈Λ

f−1(Uα)

=
⋃
α∈Λ

Vα ∩K ⊆
⋃
α∈Λ

Vα

Hence V is an open cover for K. By compactness, V admists a finite subcover V ′ = {Vαi
: i = 1, . . . , l}.

Then

f(K) = f

(
l⋃
i=1

Vαi
∩K

)

=
l⋃
i=1

f(Vαi
∩K)

=
l⋃
i=1

Uαi
∩ f(K)

⊆
l⋃
i=1

Uαi

Hence U = {Uαi
: i = 1, . . . , l} is a finite subcover for f(K).

Corollary 9.1

If ∅ ̸= K ⊆ RN is compact, f : K → RM be continuous, then f(K) is is closed and bounded.

Proof. Theorem 5.6.
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9.4.1 Extreme Value Theorem

Theorem 9.5: Extreme Value Theorems

Suppose ∅ ̸= K ⊆ RN is compact and f : K → R is continuous, then there are xmin, xmax ∈ K such
that

f(xmin) = inf
x∈K

f(x) and f(xmax) = sup
x∈K

f(x)

Proof. By Theorem (9.4) and Theorem (5.6), we know that f(K) is closed and bounded. In particular,
inf f(K) = infx∈K f(x) and supx∈K f(x) exist. Since f(K) is closed, we must have infx∈K ∈ f(K) and
supx∈K ∈ f(K).

9.5 Uniform Continuity

Definition 9.4: Uniformly continuous

Let D ⊆ RN and f : D → RM be a function, we say that f is uniformly continuous if given ε > 0,
there exists δ > 0 such that for all x, y ∈ D satisfying ∥x− y∥ < δ, we have ∥f(x) − f(y)∥ < ε.

Example 9.7

Let D = [−d, d] ⊆ R be closed and bounded. Let f : D → R be defined as f(x) = x2. Then f is
uniformly continuous on D. (In fact, D only needs to be bounded.)

Proof. ε > 0, we have for x, y ∈ D,

|f(x) − f(y)| = |x+ y||x− y|

hence we can easily take δ = ε/2d.

Example 9.8

Let f : (0, 1) → R defined as f(x) = 1/x, then f is not uniformly continuous on D = (0, 1).

Proof. Take ε = 1, given δ > 0, let n ∈ N be such that 1
n < δ

2 . Set x = 1
n and y = 1

n+1 . Now we have
|x− y| < δ, but |f(x) − f(y)| = 1 ≥ ε.

Example 9.9

The function x 7→ sin 1/x (x > 0) is not uniformly continuous on (0,∞) because limx→0 sin 1/x does
not exist.
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Theorem 9.6

Let ∅ ̸= K ⊆ RN be compact and f : K → RM be continuous, then f is uniformly continuous on K.

Proof. SFAC that f is not. Then there exists ε > 0 such that for each δn = 1/n, we can find xn, yn ∈ K

such that
∥xn − yn∥ < δ ∥f(xn) − f(yn)∥ ≥ ε

Since K is compact, by Theroem (8.1), (xn) has a subsequence (xnk
) converging to a point x ∈ K. Notice

that

lim
k→∞

ynk
= lim
k→∞

(ynk
− xnk

+ xnk
)

= lim
k→∞

(ynk
− xnk

)︸ ︷︷ ︸
→0

+ lim
k→∞

xnk
= x

By continuity in Theorem (9.2),
f(x) = lim

k
f(xnk

) = lim
k
f(ynk

)

then
lim
k

[f(xnk
) − f(ynk

)] = 0

which is a contradiction.

9.6 Continuity and Connectedness

Theorem 9.7

Let ∅ ̸= D ⊆ RN be connected and f : D → RM is continuous, then f(D) is connected.

Proof. SFAC {U, V } is a disconnection for f(D). Since f is continuous, by Theorem (9.3), there are open
sets Ũ and Ṽ ⊆ RN such that

f−1(U) = C ∩ Ũ and f−1(V ) = C ∩ Ṽ

Then the pair {Ũ , Ṽ } is a disconnection for D. Contradiction.

9.6.1 Intermediate Value Theorem

Corollary 9.2: Intermediate Value Theorem

Let ∅ ̸= D ⊆ RN be connected, f : D → R be continuous. Then f(D) is an interval. In particular, if
x1, x2 ∈ D such that f(x1) < c < f(x2) for some c ∈ R, then there exists d ∈ D such that f(d) = c.
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10 Differentiability on RN

We wish to introduce a notion of differentiability for functions f : D → RM , D ⊆ RN open extending the
corresponding notion for real-valued functions in one variable.
Recall: If f : (a, b) → R and x0 ∈ (a, b) then we say f is differentiable at x0 if

lim
h→0

f(x0 + h) − f(x0)
h

exists, and the derivative at x0 is

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

.

The derivative f ′(x0) gives us information such as:

• the minimum and maximum of the function,

• if the function is increasing or decreasing,

• and if f ′(x0) exists then f is continuous at x0.

The geometric intuition for a derivative is:

x

y

y = f(x)

y = f(x0) + f ′(x0)(x− x0)

x0

x0 + h

x0 x0 + h

Here, f ′(x0) is the slope of the line tangent to the graph of f at (x0, f(x0)).
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Definition 10.1: Differentiable

Let ∅ ̸= D ⊆ RN be an open set, f : D → RM be a function. We say f is differentiable at x0 ∈ D if
there exists a linear transformation T : RN → RM such that

lim
h→0

∥f(x0 + h) − f(x0) − T (h)∥
∥h∥

= 0

Discovery 10.1

1. The numerator we have is a norm of a vector in RM , and the denominator is a norm of a vector
in RN .

2. The linear transformation T : RN → RM is a nice approximation for f(x0 + h) − f(x0). In
particular, T (0) = f(x0 + 0) − f(x0) = 0. Additionally, not only

lim
h→0

(f(x0 + h) − f(x0) − T (h)) = 0

but also
lim
h→0

∥f(x0 + h) − f(x0) − T (h)∥
∥h∥

= 0

10.1 Uniqueness of Derivative

Theorem 10.1: Uniqueness of Derivative

Let ∅ ̸= D ⊆ RN , f : D → RM be a function. Suppose A1, A2 : RN → RM are linear transformations
such that

lim
h→0

∥f(x0 + h) − f(x0) −Ai(h)∥
∥h∥

= 0 for i = 1, 2

then A1 = A2.

Proof. For h with x0 + h ∈ D we have

∥A1h−A2h∥ ≤ ∥A1h− [f(x0 + h) − f(x0)]∥ + ∥[f(x0 + h) − f(x0)] −A2h∥

Hence we have
lim
h→0

∥A1h−A2h∥
∥h∥

= 0

Fix h ∈ RN , h ̸= 0, and t ∈ R, t > 0. By linearity, we have

∥A1(th) −A2(th)∥
∥th∥

= ∥A1h−A2h∥
∥h∥

40



Taking the limit of t → 0, we can get that

∥A1h−A2h∥
∥h∥

= lim
t→0

∥A1(th) −A2(th)∥
∥th∥

= 0

which suggests that A1(h) = A2(h).

Definition 10.2: Differential

If f is differentiable at x0 ∈ D, we call the (unique) linear transformation T : RN → RM satisfying
Definition (10.1) the differential of f at x0. We denote it by (Df)(x0), also (Df)x0 or f ′(x0). Thus
Df(x0) : RN → RM is a linear transformation. We say that f is differentiable in D if f is differentiable
at all x ∈ D.

Result 10.1

f(x0 + h) = f(x0) +Df(x0) · h+ Error(h)

where
lim
h→0

∥Error(h)∥
∥h∥

= 0

Recall from Linear Algebra. Let {e1, e2, . . . , eN} and {u1, u2, . . . , uM} be the standard basis for RN

and RM respectively. A linear transformation T : RN → RM is determined by a matrix A ∈ MM,N (R),
A = (αij), where

A =

 | | |
T (e1) T (e2) · · · T (eN )

| | |


so that if we regard v ∈ RN as a column vector, we have

Tv = Av = A


v1

v2
...
vN

 .

If T : RN → RM and S : RM → RK , and A ∈ Mm×n(R) represents T and B ∈ Mm×k(R) represents S. Then
STv = BAv for all v ∈ RN . That is, the matrix BA represents the linear transformation ST : RN → RK .
We have

∥T∥ := sup
∥v∥≤1

∥Tv∥ < ∞ and ∥Tv∥ ≤ ∥T∥∥v∥

holds for every vector v ∈ RN .

Example 10.1

Consider N = 2, M = 1 and let D ⊆ R2 open, f : D → R. Suppose that f is differentiable at x0 ∈ D.
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Then (Df)(x0) is determined by (a, b) ∈ M1,2(R) for a, b ∈ R:

f(x0 + (h1, h2)) ≈ f(x0) +
(
a b

)(h1

h2

)
f(x0 + (h1, h2)) ≈ f(x0) + ah1 + bh2︸ ︷︷ ︸

equation of a plane in R3

The graph of f is a surface in R3. Near the point (x0, f(x0)), the graph of f is approximated by the
tangent plane at (x0, f(x0)).

Lecture 16 - Monday, Jun 10

Recall that if T : RN → RM is a linear transformation, then

∥T∥ := sup{∥Tv∥ : ∥v∥ ≤ 1} ≪ ∞

Moreover,

1. ∥T∥ = 0 if and only if T = 0;

2. ∥αT∥ = |α| ∥T∥;

3. ∥T + S∥ = ∥T∥ + ∥S∥.

It follows that for all h ∈ RN ,
∥T (h)∥ ≤ ∥T∥ ∥h∥

because T is linear and if h
∥h∥ has norm 1, then∥∥∥∥T ( h

∥h∥

)∥∥∥∥ ≤ ∥T∥ ⇒ ∥T (h)∥ ≤ ∥T∥ ∥h∥

Now we have the following theorem:

Theorem 10.2

Let ∅ ̸= D ⊆ RN be open, f : D → RM be differentiable at x0 ∈ D, then f is continuous at x0.

Proof. By the definition of differentiability (10.1), we have

lim
h→0

∥f(x0 + h) − f(x0) − (Df)(x0)(h)∥
∥h∥

= 0

Hence we have that
lim
h→0

∥f(x0 + h) − f(x0) − (Df)(x0)(h)∥ = 0

Then

0 ≤ ∥f(x0 + h) − f(x0)∥
≤ ∥f(x0 + h) − f(x0) − (Df)(x0)(h)∥ + ∥(Df)(x0)(h)∥
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Taking the limit as h → 0 and using that (Df)(x0) is continuous (because it is linear) yields that

lim
h→0

∥f(x0 + h) − f(x0)∥ = 0

which suggests that f is continuous at x0.

Example 10.2: What is the differential of a linear tranformation T : RN → RM

Suppose N = M = 1, T (x) = αx for some α ∈ R for all x ∈ R. Then T ′(x) = T is linear transformation
on R for every x ∈ R. In general for T : RN → RM , we have for all h ∈ RN and x0 ∈ RN , we have

T (x0 + h) − T (x0) − T (h) = 0

In particular, (DT )(x0) = T .

Example 10.3

Let f : RN ⊇ D → RM be a function and write f = (f1, f2, . . . , fM ), where fj : D → R for all
j = 1, 2, . . . ,M . A linear transformation T : RN → RM is determined by the vector

v := T (1)

Then T is the differential of f at x0 ∈ D if and only if

lim
h→0

∥f(x0 + h) − f(x0) − h · v∥
∥h∥

= 0

It follows that f is differentiable at x0 if and only if each component fj is, in which case

(Df)(x0) =


f ′

1(x0)
f ′

2(x0)
...

f ′
M (x0)


determined by the derivative of its components.

10.2 Chain Rule

Theorem 10.3: Chain Rule

Suppose ∅ ̸= D ⊆ RN is open. If f : D → RM , f(D) ⊆ V , V ⊆ RM is open, g : V → RK . If f is
differentiable at x0 ∈ D, g is differentiable at f(x0), then g ◦ f is differentiable at x0 and

D(g ◦ f)(x0) = (Dg)(f(x0))(Df)(x0)
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Note: On the right hand side, we have the product of linear transformation RN → RM and RM → RK .
On the left hand side we have a function RN → RK .

Proof. Let us write y0 = f(x0),

A = (Df)(x0) and B = (Dg)(f(x0))

we wish to show that
lim
h→0

∥g(f(x0 + h)) − g(f(x0)) −BA(h)∥
∥h∥

= 0

We have for h ∈ RN such that f(x0 + h) is defined,

g(f(x0 + h)) − g(f(x0)) −BA(h) = g(y0 + k) − g(y0) −BA(h)

where k = f(x0 + h) − f(x0). Since B = (Dg)(y0), given ε > 0, there exists δ1 > 0 such that g(y0 + k′) is
defined and

∥g(y0 + k′) − g(y0) −B(k′)∥ < ε ∥k′∥

whenever ∥k′∥ < δ1. Since f is continuous at x0, we can find δ2 > 0 such that of h ∈ RN and ∥h∥ < δ2, then
f(x0 + h) is defined and

∥k∥ = ∥f(x0 + h) − f(x0)∥ < δ1

Because A = (Df)(x0), we can find δ3 > 0 such that f(x0 + h) is defined and

∥k −A(h)∥ < ε′ ∥h∥

where ε′ = min{ ε
∥B∥ , ε}. Take δ = min{δ2, δ3}, if ∥h∥ < δ, then

∥B(k −A(h))∥ ≤ ∥B∥ ∥k −A(h)∥ < ε ∥h∥

We also have
∥k∥ < ∥k −A(h)∥ + ∥A(h)∥ < ε ∥h∥ + ∥A∥ ∥h∥ (1)

and ∥k∥ < δ1. So we have

∥g(y0 + k) − g(y0) −BA(h)∥ ≤ ∥g(y0 + k) − g(y0) −B(k)∥ + ∥B(k) −BA(h)∥ < ε ∥k∥ + ε ∥h∥

Then

∥g(y0 + k) − g(y0) −BA(h)∥
∥h∥

<
ε ∥k∥
∥h∥

+ ε

<
ε(ε ∥h∥ + ∥A∥ ∥h∥)

∥h∥
+ ε

= ε2 + (1 + ∥A∥)ε by (1)

This shows that
lim
h→0

∥g(y0 + h) − g(y0) −BA(h)∥
∥h∥

= 0
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Lecture 17 - Wednesday, Jun 12

10.3 Partial Derivative

Recall that {e1, . . . , eN} and {u1, . . . , uM} denote the standard basis of RN and RM respectively. For
f : D → RM , ∅ ̸= D ⊆ RN , f = (f1, . . . , fM ) where fj : D → R is the jth component of f .

Definition 10.3: Partial Derivative

For each 1 ≤ i ≤ N and 1 ≤ j ≤ M , we define for x0 ∈ D,

∂fj(x0)
∂xi

= lim
t→0

fj(x0 + tei) − fj(x0)
t

provided that the limit exists. ∂fj(x0)
∂xi

is the derivative of fj at x0 in the xi direction, and it is called
partial derivative of f at x0.
Further notation: (Difj)(x0). If M = 1, we have ∂f(x0)

∂xi
, or (Dif)(x0).

Discovery 10.2

It may happen that all partial derivative of f at x0 exist, but f is not contimuous at x0. But if f is
differentiable at x0, then its partial derivatives determine (Df)(x0).

10.3.1 Geometrix Interpretation

Algorithm 10.1: How do we calculate partial derivative?

We treat the variables x1, . . . , xi−1, xi+1, . . . , xN as constants.
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Example 10.4

Let f : R2 → R, f(x, y) = ex + x cos(xy), then

∂f

∂y
(x, y) = −x2 cos(xy) ∂f

∂x
(x, y) = ex + cos(xy) − xy cos(xy)

Example 10.5: This is related to discovery (10.2)

Let f : R2 → R, f(x, y) =

 xy
x2+y2 (x, y) ̸= (0, 0)
0 otherwise

. The partial derivatives of f at (x, y) exist if

(x, y) ̸= (0, 0); If (x, y) = (0, 0), we have

∂f(0, 0)
∂x

= lim
t→0

f(t, 0) − f(0, 0)
t

= 0 = ∂f(0, 0)
∂y

The partial derivatives of f exist at every point, but f is not continuous at (0, 0).

Recall if T : RN → RM , then the matrix of T with respect to the standard basis is given by | | |
T (e1) T (e2) · · · T (eN )

| | |

 = (aji)j,i

where T (ei) =
∑M
j=1 ajiuj .

Theorem 10.4

Let ∅ ̸= D ⊆ RN be open and f : D → RM be differentiable at x0 ∈ D, then all the partial derivatives
∂fj(x0)
∂xi

of f at x0 exist and

(Df)(x0)(ei) =
M∑
j=1

∂fj(x0)
∂xi

(uj)

As a consequence, the matrix of (Df)(x0) with respect to the standard basis is given by
∂f1(x0)
∂x1

∂f1(x0)
∂x2

· · · ∂f1(x0)
∂xN

∂f2(x0)
∂x1

. . .
... . . .

∂fM (x0)
∂x1

∂fM (x0)
∂xN

 =
(
∂fj(x0)
∂xi

)
j,i

Proof. We know that
lim
t→0

∥f(x0 + tei) − f(x0) − (Df)(x0)(tei)∥
|t|

= 0

Using linearity of (Df)(x0), the above yields

lim
t→0

f(x0 + tei) − f(x0)
t

= (Df)(x0)(ei)
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This implies that ∂fj(x0)
∂xi

exists for all j = 1, . . . ,M and

(Df)(x0)(ei) =
(
∂f1(x0)
∂xi

, . . . ,
∂fM (x0)
∂xi

)
=

M∑
j=1

∂fj(x0)
∂xi

(uj)

Definition 10.4: Jacobian Matrix

The matrix
[
∂fj(x0)
∂xi

]
j,i

is called the Jacobian Matrix of f at x0 and denoted by Jf (x0).

Example 10.6

Let γ : (a, b) → D for ∅ ̸= D ⊆ RN is open, suppose γ is differentiable in (a, b). Let f : D → R be
differentiable in D. Combining the chain rule (10.3) with the above theorem, we obtain that g = f ◦ γ
is differentiable in (a, b) and

g′(t) = (f ◦ γ)′(t)

=
[
∂f(γ(t))
∂x1

· · · ∂f(γ(t))
∂xN

]
γ′

1(t)
...

γ′
N (t)

 =
N∑
i=1

∂f(γ(t))
∂xi

γ′
i(t)

Definition 10.5: Gradient Notation

Let f : D → R for D ⊆ RN open, f differentiable at x0 ∈ D, then (Df)(x0) is a M1,N (R), (Df)(x0) =(
∂f
∂x1

, . . . , ∂f
∂xN

)
is called the gradient of f at x0 and denoted as ∇f(x0). Notice that if f : D → RM ,

then

(Df)(x0) =


∇f1(x0)

...
∇fM (x0)



Lecture 18 - Friday, Jun 14

Definition 10.6: Directional Derivative

Let ∅ ̸= D ⊆ RN be open, f : D → RM be a function. Let x0 ∈ D and v ∈ RN a unit (i.e, ∥v∥ = 1).
The directional derivative of f in the direction of v at x0 is given by

(Dvf)(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

provided that the limit exists.
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Discovery 10.3

If v = ei, then (Dvf)(x0) = ∂f
∂xi

(x0) is the partial derivative.

Theorem 10.5

Let ∅ ̸= D ⊆ RN be open, f : D → R be a function differentiable at x0 ∈ D. Then the directional
derivative of f at x0 exists for every unit vector v ∈ RN , and

(Dvf)(x0) = ∇f(x0) · v

Proof. Consider the function γ : R → RN , γ(t) = x0 + tv. Then γ is differentiable in R and γ′(t) = v for all
t ∈ R. We have γ(0) = x0. Since D is open, we can find δ > 0 such that

γ(t) ∈ D for all t ∈ (−δ, δ)

Now

(Dvf)(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

= lim
t→0

(f ◦ γ)(t) − (f ◦ γ)(0)
t

= (f ◦ γ)′(0)

Example (10.6) yields
(f ◦ γ)′(0) = ∇f(γ(0)) · γ′(0) = ∇f(x0) · v

which is desired.

Result 10.2

This allows for a geometric interpretation of the gradient vector. By Cauchy-Schwartz

∥(Dvf)(x0)∥ = ∥∇f(x0) · v∥ ≤ ∥∇f(x0)∥ ∥v∥ = ∥∇f(x0)∥

If v = ∇f(x0)
∥∇f(x0)∥ , then ∥v∥ = 1 and

(Dvf)(x0) = ∥∇f(x0)∥

So the gradient of f at x0 points in the direction to which the slope of the tangent line to the graph of
f at (x0, f(x0)) is maximal.
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Example 10.7: Existence of directional derivative does not imply continuity

Consider f : R2 → R, f(x, y) =

1 0 < y < x2

0 otherwise
,

x

y

y = x2

f = 0

f = 0

f = 1 We have (Dvf)(0, 0) = 0 for all unit vectors
v ∈ R2, but f is not continuous at (0, 0).

Recall Mean Value Theorem.
Exercise: See more at HW3. f : RN → RM is differentiable at x0 ∈ D if and only if the jth component of
f , fj = RN → R is differentiable at x0 for all j = 1, . . . ,M .

Theorem 10.6: Sufficient Condition for Differentiability

Let ∅ ̸= D ⊆ RN be open, f : D → RM , x0 ∈ D. Suppose that all partial derivatives of f , ∂f
∂xi

, exist
in D and are continuous at x0. Then f is differentiable at x0.

Proof. We can assume M = 1. We know f is differentiable at x0 if and only if

lim
h→0

∥f(x0 + h) − f(x0) − ∇f(x0) · h∥
h

= 0

Let ε > 0 be given. Since each ∂f
∂xi

is continuous at x0, there exists δ > 0 such that if |z − x0| < δ, then
z ∈ D and ∣∣∣∣∂f(z)

∂xi
− ∂f(x0)

∂xi

∣∣∣∣ < ε

N
i = 1, . . . , N

Fix h ∈ RN with ∥h∥ < δ and write h = (h1, . . . , hN ). For each k = 1, . . . , N , set

vk =
k∑
i=1

hiei = (h1, . . . , hk, . . . , 0N−k)

We also set v0 = 0. Now vk = vk−1 + hkek for k = 1, . . . , N and ∥vk∥ < δ for all k = 0, . . . , N . Now

f(x0 + h) − f(x0) − f(x0 + vk−1) + f(x0 + vk−1) =
N∑
k=1

f(x0 + vk) − f(x0 + vk−1)
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Fix k = 1, we have x0 + vk, x0 + vk−1 ⊆ Bδ(x0). Since Bδ(x0) is convec, it follows that

t(x0 + vk) + (1 − t)(x0 + vk−1) ∈ Bδ(x0) ∀ t ∈ [0, 1]

For all t ∈ [0, 1],
x0 + vk−1 + thkek ∈ Bδ(x0)

Hence the function
t 7→ f(x0 + vk−1 + thkek)

is continuous on [0, 1] and differentiable in (0, 1) because ∂f
∂xk

exists in D. Set gk : [0, 1] → R, gk(t) =
f(x0 + vk−1 + thkek), we have gk(1) = f(x0 + vk) and gk(0) = f(x0 + vk−1). By Mean Value Theorem, there
exists ck ∈ (0, 1) such that

hk
∂f

∂xk
(x0 + vk−1 + ckhkek) = g′

k(ck) = f(x0 + vk) − f(x0 + vk−1)

Thus

f(x0 + vk) − f(x0 + vk−1) − ∂f(x0)
∂xk

hk

=hk
∂f

∂xk
(x0 + vk−1 + ckhkek) − ∂f(x0)

∂xk
hk

and ∣∣∣∣f(x0 + vk) − f(x0 + vk−1) − ∂f(x0)
∂xk

hk

∣∣∣∣
=
∣∣∣∣hk ∂f∂xk (x0 + vk−1 + ckhkek) − ∂f(x0)

∂xk
hk

∣∣∣∣ < hk · ε
N

≤ ∥h∥ · ε
N

=|hk|
∣∣∣∣ ∂f∂xk (x0 + vk−1 + ckhkek) − ∂f(x0)

∂xk

∣∣∣∣
now we have∣∣∣f(x0 + h) − f(x0) −

∑N
k=1

∂f(x0)
∂xk

hk

∣∣∣
∥h∥

=

∣∣∣∑N
k=1

(
f(x0 + vk) − f(x0 + vk−1) − ∂f(x0)

∂xk
hk

)∣∣∣
∥h∥

<

N∑
k=1

∥h∥ · ε
∥h∥ ·N

= ε

Lecture 19 - Monday, Jun 17

Example 10.8
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Let f : R2 → R, f(x, y) =

(x2 + y2) sin
(

1√
x2+y2

)
(x, y) ̸= (0, 0)

0 otherwise
. If (x, y) ̸= (0, 0), we have

∂f(x, y)
∂x

= 2x sin
(

1√
x2 + y2

)
+ (x2 + y2) cos

(
1√

x2 + y2

)(
−1

2

)
1

(x2 + y2)3/2 (2x)

= 2x sin
(

1√
x2 + y2

)
− x√

x2 + y2
cos
(

1√
x2 + y2

)

At (0, 0), we have

∂f(0, 0)
∂x

= lim
(h1,h2)→(0,0)

∥(h1, h2)∥2 sin
(

1
∥(h1,h2)∥

)
∥(h1, h2)∥

= lim
(h1,h2)→(0,0)

∥(h1, h2)∥ sin
(

1
∥(h1, h2)∥

)
= 0

by squeeze theorem. This suggests that ∂f
∂x is continuous at every point (x, y) ∈ R2\{(0, 0)}, but it is

not continuous at (0, 0) because, for example,

lim
n→∞

∂f
( 1

2nπ , 0
)

∂x
= −1 ̸= 0 = ∂f(0, 0)

∂x

By Theorem (10.6), f is differentiable at every point (x, y) ̸= (0, 0). However, f is also differentiable
at (0, 0):

∂f(0, 0)
∂x

= lim
t→0

f(t, 0) − f(0, 0)
t

= lim
t→0

t sin
(

1
t

)
= 0

Now we compute
lim

(h1,h2)→(0,0)

|f(h1, h2) − f(0, 0) − 0(h1, h2)|
∥(h1, h2)∥ = 0

which suggests that f is differentiable at (0, 0).

10.4 Product Rule + Linearity

Proposition 10.1

Suppose ∅ ̸= D ⊆ RN is open, f, g : D → RM are differentiable at x0 ∈ D, then

λf + g : D → RM (λf + g)(x) = λf(x) + g(x)

is differentiable at x0 for all λ ∈ R, and

(D(λf + g))(x0) = λ(Df)(x0) + (Dg)(x0)

Proof. Exercise.
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Proposition 10.2: Product Rule

Suppose ∅ ̸= D ⊆ RN is open, f, g : D → RM be functions. If f and g are differentiable at x0 ∈ D,
then

f · g︸︷︷︸
dot product

: D → R x 7→ f(x) · g(x)︸ ︷︷ ︸
dot product

is differentiable at x0, and

(D(f · g))(x0) = f(x0)T (Dg)(x0) + g(x0)T (Df)(x0)

In case of M = 1, this gives
∇(f · g) = f · ∇g + g · ∇f

Proof. We write v = f · g =
∑M
j=1 fj · gj . If v is differentiable at x0, then (Dv)(x0) =

(
∂v
∂x1

, ∂v∂x2
, . . . , ∂v

∂xN

)
.

Write
∂v

∂xi
= ∂

∂xi

 M∑
j=1

fjgj

 =
M∑
j=1

(
∂fj
∂xi

· gj + ∂gj
∂xi

· fj
)

and this is exactly the ith column of (Dv)(x0), so it suffices to show that v is differentiable at x0. We have

v(x0 + h) − v(x0) − (f(x0)T (Dg)(x0) + g(x0)T (Df)(x0)h)
= (f · g)(x0 + h) − (f · g)(x0) − f(x0) · g(x0 + h) + f(x0) · g(x0 + h)

−g(x0 + h)T (Df)(x0)h+ g(x0 + h)T (Df)(x0)h
−f(x0)T (Dg)(x0) − g(x0)T (Df)(x0)h

= s1 + s2 + s3

where

s1 = (f · g)(x0 + h) − f(x0) · g(x0 + h) − g(x0 + h)T (Df)(x0)
s2 = f(x0)g(x0 + h) − f(x0)g(x0) − f(x0)T (Dg)(x0)h
s3 = (g(x0 + h) − g(x0))T (Df)(x0)h

Then by Cauchy-Schwartz (1.1), we have

|s1|
∥h∥

≤ ∥g(x0 + h)∥ · ∥f(x0 + h) − f(x0) − (Df)(x0)h∥
∥h∥

,

|s2|
∥h∥

≤ ∥f(x0)∥ · ∥g(x0 + h) − g(x0) − (Dg)(x0)h∥
∥h∥

,

|s3|
∥h∥

≤ ∥g(x0 + h) − g(x0)∥ · ∥(Df)(x0)h∥
∥h∥

≤ ∥g(x0 + h) − g(x0)∥ · ∥(Df)(x0)h∥

Since g is continuous at 0, each summation goes to 0 as h → 0.
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Lecture 20 - Wednesday, Jun 19

10.5 Higher Order Partial Derivatives

Suppose ∅ ̸= D ⊆ RN open and f : D → R,

Definition 10.7: Second Order Partial Derivative

If i ∈ {1, . . . , N} is such that ∂f
∂xi

exists in D, then ∂f
∂xi

is a function on D. If the partial derivatives of
∂f
∂xi

exist, we define for j = 1, . . . , N ,

∂2f

∂xj∂xi
= ∂

∂xj

(
∂f

∂xi

)
is called the second order partial derivative of f .

Definition 10.8

We say that f ∈ C0(D) if f is continuous on D, f ∈ C1(D) if f ∈ C0(D) and the partial derivatives
of f exist in D and are continuous. If f ∈ C1(D), then f is continuously differentiable. In general,
f ∈ Ck(D) if f ∈ Ck−1(D) and all ∂kf

∂xik
∂xik−1 ···∂xi1

are in C0(D).

Example 10.9

Suppose f(x, y) = exy

x , (x ̸= 0). then

fx = yexy

x
− exy

x2 =
(
y

x
− 1
x2

)
exy

fy = exy

The second order partial derivatives are

fxx = y

(
y

x
− 1
x2

)
exy +

(
−y
x

+ 2
x3

)
exy

fxy = yexy

fyx = yexy

fyy = xexy

Discovery 10.4

Notice that fxy = fyx. In fact, partial derivatives are commutative. (See more in 10.8)
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Discovery 10.5

Let ∅ ̸= D ⊆ RN , N ≥ 3. Suppose i, j ∈ {1, . . . , N}, i < j, and ∂f
∂xi

, ∂2f
∂xi∂xj

, ∂f
∂xj∂xi

all exist at
x0 = (a1, . . . , aN ). We consider g : R2 ⊇ U → R defined by

g(x, y) = f(a1, . . . , ai−1, xi, ai+1, . . . , aj−1, yj , aj+1, . . . , aN )

Then we have
∂g(x, y)
∂x

= ∂f

∂xi
(a1, . . . , ai−1, xi, ai+1, . . . , aj−1, yj , aj+1, . . . , aN )

This will allow us to assume N = 2 in the next theorem.

Theorem 10.7: Two Dimensional MVT

Let ∅ ̸= D ⊆ R2 be open, f : D → R a function on D. Suppose ∂f
∂x , ∂2f

∂y∂x exist in D. Let (a, b) ∈ D,
and let Q be a closed interval contained in D with opposite vertices (a, b) and (a + h, b + k). Then
there exists an interior point of Q, denoted as (x, y), such that

∆(f,Q) = hk
∂2f(x, y)
∂y∂x

where ∆(f,Q) = f(a+ h, b+ k) − f(a+ h, b) − f(a, b+ k) + f(a, b).

Proof. Let v(t) := f(t, b + k) − f(t, b) for t ∈ [a, a + h] (or [a + h, a]). Then v is differentiable in the open
interval and continuous in the closed interval. By MVT, we can find x between a and a+ h such that

v′(t) = v(a+ h) − v(a)
h

= ∆(f,Q)
h

We know that
∂f(x, b+ k)

∂x
− ∂f(x, b)

∂x
= v′(x)

Now, the function s 7→ ∂f(x,s)
∂x is continuous on the interval [b, b+ k] (or [b+ k, b]) and is differentiable in the

open interval because ∂2f
∂y∂x exists in D. By MVT again, we can find y between b and b+ k such that

∂2f(x, y)
∂y∂x

=
∂f(x,b+k)

∂x − ∂f(x,b)
∂x

k

Replacing the above equation with the second one, we obtain

∂2f(x, y)
∂y∂x

= ∆(f,Q)
hk

as desired.
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10.5.1 Partial Derivatives are Commutative

Theorem 10.8: Partial Derivatives are Commutative

Let ∅ ̸= D ∈ R2 be open, f : F → R. Suppose that ∂f
∂x , ∂f

∂y , and ∂2f
∂y∂x all exist in D and that ∂2f

∂y∂x is
continuous at (a, b) ∈ D. Then ∂2f

∂x∂y exists at (a, b) and

∂2f(a, b)
∂y∂x

= ∂2f(a, b)
∂x∂y

Proof. Set A := ∂2f(a,b)
∂y∂x , we need to show that

lim
h→0

(
fy(a+ h, b) − fy(a, b)

h
−A

)
= 0

Let ε > 0, let δ′ > 0 be such that if Bδ′((a, b)) ⊂ D and if (x, y) ∈ Bδ′((a, b)), then

|fxy(x, y) −A| < ε

Let ε > 0 such that
[a− δ, a+ δ] × [b− δ, b+ δ] ⊂ Bδ′((a, b))

Take h, k ̸= 0 with |h|, |k| < δ, then the closed rectangle Q with opposite vertices (a, b) and (a+ h, b+ k) is
contained in Bδ′((a, b)). Apply Theorem (10.7), there exists (x, y) ∈ D◦ such that

∆(f,Q) = hk
∂2f

∂y∂x
(x, y)

Then ∣∣∣∣∆(f,Q)
hk

−A

∣∣∣∣ < ε

Thus ∣∣∣∣f(a+ h, b+ k) − f(a+ h, b) − f(a, b+ k) + f(a, b)
hk

−A

∣∣∣∣ < ε

Take limit as k → 0, we get ∣∣∣∣fy(a+ h, b) − fy(a, b)
h

−A

∣∣∣∣ < ε

since 0 ̸= h ∈ D, |h| < δ. This shows that fyx(a, b) exists and

fyx(a, b) = fxy(a, b)
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Corollary 10.1: Clairaut’s Theorem

Let ∅ ̸= D ∈ R2 be open, f : F → R in C2(D). Then

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
∀ 1 ≤ i, j ≤ N

Proof. This follows Theorem (10.8) and Discovery (10.5).

11 Vector Fields
Definition 11.1: Vector Field

A vector field is simply a function v : RN ⊃ D → RN .

Example 11.1: Important Example

Suppose f : D → R is differentiable, then

∇f : D → RN , x ∈ D 7→
(
∂f(x)
∂x1

, . . . ,
∂f(x)
∂xN

)
is a vector field called the gradient field.

Proposition 11.1

Suppose that v : D → RN for D open is a vector field of class 1 (in C1(D)). Then a necassary condition
for v to be a gradient field is that

∂vj
∂xi

= ∂vi
∂xj

∀ 1 ≤ i, j ≤ N

Proof. Suppose v = ∇f , then f must necessarily be class C2. Then by Clairaut’s Theorem (10.1),

∂vj
∂xi

= ∂

∂xi

(
∂f

∂xj

)
= ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
= ∂vi
∂xj
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11.1 Other Operations on a Vector Field

Definition 11.2: Divergence

Suppose v : D → RN is a differentiable vector field, then the divergence of v is

div(v) =
N∑
i=1

∂vi
∂xi

= ∇ · v

=
(

∂

∂x1
, . . . ,

∂

∂xN

)
· (v1, . . . , vN )

Remark: the div corresponds to taking the trace of the Jacobian of v.

Definition 11.3: Laplace Operator

If f : D → R is of class C2, the Laplace Operator is

∆f = div(grad f︸ ︷︷ ︸
∇f

) =
N∑
i=1

∂2f

∂x2
i

Definition 11.4: Harmonic

A function f : D → R is said to be Harmonic if ∆f = 0.

The Laplace operator appears in many partial differential equation:

Example 11.2: Heat Equation and Wave Equation

Let D ⊂ RN , f : D× (0,∞) → R, f(x, t) for x ∈ D and t ∈ (0,∞) (think of this as “time”). The heat
equation is

∂f

∂t
= k∆f

The wave equation is
∂2f

∂t2
= k∆f
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11.2 Derivative as Linear Approximation

Suppose N = 1. Recall that f ′(x0) is the derivative of f at x0, and

f(x) = f(x0) + f ′(x0)(x− x0) +Rx0(h),

for some error function Rx0(h), where h = x− x0 and limh→0
Rx0 (h)
h = 0. If f : D → R, D ⊆ RN , N ≥ 2 and

f is differentiable at x0, then

f(x) = f(x0) + (Df)(x0)(x− x0) +Rx0(h)

where h = x− x0 and limh→0
∥Rx0 (h)∥

∥h∥ = 0. The function L : RN → R,

L(x) = f(x0) + (Df)(x0)(x− x0)

is the linear approximation of f at x0. If N = 2, then for (x0, y0) ∈ D,

L(x) = f(x0, y0) + ∇f(x0, y0) · (x− x0, y − y0)
= f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

is the tangent plane to the graph of f .

Lecture 22 - Monday, Jun 24

12 Taylor’s Theorem

12.1 Single Variable Taylor’s Theorem

We wish to prove a version of Taylor’s Theorem for functions of several variables.

Theorem 12.1: Taylor’s Theorem (one variable case)

Let n ≥ 1 and let f : (a, b) → R be n-times differentiable in (a, b). Let x0 ∈ (a, b), then for each
x ∈ (a, b), x ̸= x0, there exists ξ lying between x0 and x such that

f(x) =
n−1∑
k=0

f (k)(x0)
k! (x− x0)k + f (n)(ξ)

n! (x− x0)n

Proof. We let x ̸= x0, we prove by induction on n:

1. Base Case:
When n = 1, the statement is the MVT.

2. Induction Step:
Suppose n ≥ 2 and write

p(t) =
n−1∑
k=0

f (k)(t)
k! (t− x0)k
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for t ∈ R. Set
M := f(x) − p(x)

(x− x0)n

such that f(x) = p(x) + M(x − x0)n. We need to show that M = f (n)(s)/n! for some s between x0

and x. Or equivalently, f (n)(s) = n!M . Consider g(t) = f(t) − p(t) − M(t − x0)n, then g(x0) = 0.
Moreover, for k = 1, . . . , n− 1, we have

g(k)(x0) = f (k)(x0) − p(k)(x0) = 0

because p(k)(x0) ≡ f (k)(x0) for k = 1, . . . , n− 1. Now

g(n)(t) = f (n)(t) − n!M

So we need to find ξ between x0 and x such that g(n)(ξ) = 0. Since g(x) = 0 by our choice of M ,
by MVT, there exists x1 between x0 and x such that g′(x1) = 0. Since g′(x0) = 0 and g′(x1) = 0,
again, by MVT, there exists x2 lying between x0 and x1 such that g′′(x2) = 0. Continuing with this
process, after n− 1 steps we obtain a point xn−1 between x0 and x such that g(n−1)(xn−1) = 0. Since
g(n−1)(x0) = 0, we apply MVT again and get xn lying between x0 and xn−1 such that g(n)(xn) = 0.
Setting ξ := xn, we get

f (n)(ξ)
n! = M

Corollary 12.1: Second Derivative Test

Let f ∈ C2((a, b)). Let x0 ∈ (a, b) be such that f ′(x0) = 0. Then

1. if f ′′(x0) < 0, then x0 is a local maximum of f ;

2. if f ′′(x0) > 0, then x0 is a local minimum of f ;

Proof. Since f ′′ is continuous, then there exists δ > 0 such that (x−δ, x+δ) ⊂ (a, b) and f ′′(x) < 0 whenever
|x− x0| < δ. Now let x with |x− x0| < δ. By Taylor’s Theorem, there exists ξ between x0 and x such that

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(ξ)
2 (x− x0)2

= f(x0) + f ′′(ξ)
2 (x− x0)2

Since f ′′(ξ) < 0, we get f(x) < f(x0), which implies that f(x0) is a local maximum.
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12.2 Multivariable Taylor’s Theorem

Definition 12.1: Notation: Multiindex

For n ≥ 0, we let α = (α1, . . . , αN ) ∈ NN0 (including 0) with α1 + · · · +αN = N . For α ∈ NN0 , we write

xα = xα1
1 xα2

2 · · ·xαN

N

for x = (x1, . . . , xN ) ∈ RN . we define

|α| := α1 + · · · + αN and α! := α1! · · ·αN !

For α ∈ NN0 a multiindex, we write

Dαf = ∂|α|f

∂xα1
1 · · · ∂xαN

N

for f ∈ C |α|, |α| ≤ n

Example 12.1

For an example, we have

D(1,2,1)f = ∂4f

∂x1∂x2
2∂x3

and D(0,1,0) = ∂f

∂x2

Let (l1, l2, . . . , ln) be an n-tuple in {1, 2, . . . , N}n. For each k = 1, . . . , N , we let αk be the number
of times k appears in (l1, . . . , ln). Then α = (α1, . . . , αN ) is a multiindex with α1 + · · · + αN = n. If f is of
class Cn, it follows from Clairaut’s Theorem that

∂nf

∂xi1 · · · ∂xin
= Dαf

If α = (α1, . . . , αN ) be a multiindex of α1 + · · · + αN = n, there are exactly n!
α! n-tuples whose associated

multiindex as above is α. This follows from the multinomial theorem:

(x1 + · · · + xN )n =
∑

α1+···+αN =n

n!
α!x

α

Lecture 23 - Wednesday, Jun 26

Theorem 12.2: Taylor’s Theorem (N-variable)

Let ∅ ̸= D ⊆ RN be open, f : D → R, f ∈ Cn(D) for n ≥ 1. Let x0 ∈ D and let ξ ∈ RN be such that
x0 + tξ ∈ D for all t ∈ [0, 1] (line segment between x0 and x0 + ξ). Then there exists θ ∈ (0, 1) such
that

f(x0 + ξ) =
∑

|α|≤n−1

Dαf(x0)
α! ξα +

∑
|α|=n

Dαf(x0 + θξ)
α! ξα
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Example 12.2

Suppose n = 1, then

f(x0 + ξ) = f(x0) +
N∑
i=1

∂f(x0 + θξ)
∂xi

ξi = f(x0) + ∇f(x0 + θξ) · ξ

See more in A3.

Example 12.3

Suppose n = 2 and N = 2, then

f(x0 + ξ) = f(x0) + ∇f(x0) · ξ + fxx(x0 + θξ)ξ2
1

2 + fyy(x0 + θξ)ξ2
2

2 + fxy(x0 + θξ) · ξ1ξ2

= f(x0) + ∇f(x0) · ξ + 1
2(A(x0 + θξ)ξ) · ξ

where

A(x0 + θξ) =
[
fxx(x0 + θξ) fxy(x0 + θξ)
fyx(x0 + θξ) fyy(x0 + θξ)

]

Before proving the Theorem, we first introduce a Lemma:

Lemma 12.1

Let ∅ ̸= D ⊆ RN be open, f : D → R, f ∈ Cn(D) for n ≥ 1. Let x0 ∈ D and let ξ ∈ RN be such
that x0 + tξ ∈ D for all t ∈ [0, 1]. Then there exists an open interval (a, b) containing [0, 1] such that
g : (a, b) → R, g(t) = f(x0 + tξ) is in Cn(a, b) and

g(n)(t) =
∑

|α|=n

n!
α!D

αf(x0 + tξ) · ξα

Proof. The existence of (a, b) ⊃ [0, 1] with x0 + tξ ∈ D follows because F is open and x0 + tξ ∈ D for all
t ∈ [0, 1]. Let us first prove by induction on n that

g(n)(t) =
N∑

i1,...,in=1

∂nf(x0 + tξ)
∂xi1 · · · ∂xin

ξi1 · · · ξin

which is the sum over all n-tuples in {1, 2, . . . , N}n

1. For n = 0, there is nothing to prove.

2. For n = 1, since g = f ◦ γ, for γ : (a, b) → RN , γ(a, b) ⊂ D, and γ(t) = x0 + tξ, the Chain Rule (10.3)
implies that g is differentiable at t ∈ (a, b) and

g′(t) = ∇f(x0 + tξ) · ξ =
N∑
i=1

∂f(x0 + tξ)
∂xi

ξi
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3. Now suppose n ≥ 2 and

g(n−1)(t) =
N∑

i1,...,in−1=1

∂n−1f(x0 + tξ)
∂xi1 · · · ∂xin−1

ξi1 · · · ξin−1

Then again by the Chain Rule (10.3), g(n−1) is differentiable at t ∈ (a, b) and

g(n)(t) =
N∑

i1,...,in−1=1

d

dt

(
∂n−1f(x0 + tξ)
∂xi1 · · · ∂xin−1

ξi1 · · · ξin−1

)

=
N∑

i1,...,in−1=1

∂nf(x0 + tξ)
∂xi1 · · · ∂xin

ξi1 · · · ξin

By Clairaut’s Theorem (10.1), since there are exactly n!
α! n-tuples whose associated multiindex is

α = (α1, . . . , αN ), we have
g(n)(t) =

∑
|α|=n

n!
α!D

αf(x0 + tξ) · ξα

Proof. This is the prove of N -varaible Taylor’s Theorem (12.2). We need to find θ ∈ (0, 1) such that

f(x0 + ξ) =
∑

|α|≤n−1

Dαf(x0)
α! ξα +

∑
|α|=n

Dαf(x0 + θξ)
α! ξα

Let (a, b) and g : (a, b) → R, g(t) = f(x0 + tξ) be as in Lemma above. By the one variable Taylor’s Theorem
(12.1), there exists θ ∈ (0, 1) such that

g(1) =
n−1∑
k=0

g(k)(0)
k! (1 − 0)k + g(n)(θ)

n! (1 − 0)n =
n−1∑
k=0

g(k)(0)
k! + g(n)(θ)

n!

Since

g(k)(0)
k! = 1

k!

∑
|α|=k

k!
α!D

αf(x0) · ξα
 (k ≤ n− 1)

and g(n)(0)
n! = 1

n!

∑
|α|=n

n!
α!D

αf(x0 + θξ) · ξα


Substituting them in above equation we get the desired expression for f(x0 + ξ).
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12.3 Multivariate Polynomial

Definition 12.2: Multivariate Polynomial

A multivariate polynomial p : RN → R (or N -variable) of degree n is given by

p(ξ) =
n∑
k=0

∑
|α|=k

Cαξ
α


where Cα ̸= 0 for some α with |α| = n.

Discovery 12.1

Notice that
Dαp(0) = α!Cα ⇒ Cα = Dαp(0)

α!

Definition 12.3: Taylor Approximation

Suppose f ∈ Cn+1(D), the nth order Taylor Approximation of f is the polynomial

Tn,x0(ξ) =
∑

|α|≤n

Dαf(x0)
α! ξα

and the remainder term is f(x0 + ξ) − Tn,x0(ξ) =
∑

|α|=n+1
Dαf(x0+θξ)

α! ξα.

Proposition 12.1

Let f ∈ Cn+1(D), D open, f : D → R, let x0 ∈ D, then

lim
ξ→0

|Rn(ξ)|
∥ξ∥n

= 0
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Proof. Let r > 0 be such that Br[x0] ⊂ D. Since f ∈ Cn+1(D) and Br[x0] is compact, we can find M ≥ 0
such that

|Dαf(y)| ≤ M for all y ∈ Br[x0]

and all multiindex α with |α| = n+ 1. Then if ∥ξ∥ ≤ r, we have

|Rn(ξ)|
∥ξ∥n

≤
∑

|α|=n+1

|Dαf(x0 + θξ)|
α!

|ξα|
∥ξ∥n

≤
∑

|α|=n+1

M

α!
∥ξ∥n+1

∥ξ∥
=

∑
|α|=n+1

M ∥ξ∥
α!

63



Example 12.4

et f(x, y) = cos(x+ 2y) defined on R2, find T2,(0,0)(ξ)
We have f(0, 0) = 1, also

fx(x, y) = − sin(x+ 2y) fy(x, y) = −2 sin(x+ 2y)
fxx(x, y) = − cos(x+ 2y) fyy(x, y) = −4 cos(x+ 2y)
fxy(x, y) = −2 cos(x+ 2y)

Then

T2,(0,0)(ξ1, ξ2) = f(0, 0) + fx(0, 0)ξ1 + fy(0, 0)ξ2 + fxx(0, 0)
2 ξ2

1 + fyy(0, 0)
2 ξ2

2 + fxy(0, 0)ξ1ξ2

= 1 − ξ2
1
2 − 4ξ2

2
2 − 2ξ1ξ2

= 1 − 1
2
(
ξ2

1 + 4ξ2
2 − 4ξ1ξ2

)

12.4 The Hessian

Definition 12.4: Hessian

Let ∅ ̸= D ⊆ RN be open, f : D → R, f ∈ C2(D). The Hessian of f at x ∈ D denoted by
(Hess f)(x), is N ×N matrix whose i, j-entry is ∂2f(x)

∂xi∂xj
, that is

(Hess f)(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xN

∂2f(x)
∂x2∂x1

. . .
... . . .

∂2f(x)
∂xN∂x1

∂2f(x)
∂x2

N


Notice that (Hess f)(x) is symmetric by Clairaut’s Theorem (10.1).

Corollary 12.2

Let f ∈ C2(D), D ⊂ RN be open. Let x0 ∈ D and ξ ∈ RN be such that x0 + tξ ∈ D for all t ∈ [0, 1],
then there exists θ ∈ (0, 1) such that

f(x0 + tξ) = f(x0) + ∇f(x0) · ξ + 1
2 [((Hess f)(x0 + θξ)ξ) · ξ]

Proof. STP that for all x ∈ D we have

∑
|α|=2

(Dαf)(x)
α! ξα = 1

2 [((Hess f)(x)ξ) · ξ]
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We compute,

∑
|α|=2

(Dαf)(x)
α! ξα =

N∑
i=1

fxixj (x0)ξ2
1

2 +
∑
i<j

fxixj
(x)ξiξj

= 1
2

 N∑
i=1

fxixj
(x)ξ2

i +
∑
i ̸=j

fxixj
(x)ξiξj


= 1

2 [((Hess f)(x)ξ) · ξ]

as desired.

12.5 Critiacal Points

Definition 12.5: Stationary Point (Critiacal Point)

Let f ∈ C1(D), f : D → R,

1. we say that x0 ∈ D is a stationary point of f (or a critical point of f) if ∇f(x0) = 0.

2. x0 is a local maximum if there exists δ > 0 such that f(x) ≤ f(x0) for all x ∈ Bδ(x0) ∩D.

3. x0 is a local minimum if there exists δ > 0 such that f(x) ≥ f(x0) for all x ∈ Bδ(x0) ∩D.

Discovery 12.2

If x0 is a local maximum (or a local minimum) of f , then x0 is a critical point. This is becasue if
g(t) = f(x0 + tei) where 1 ≤ i ≤ N , then 0 is a local maximum (or local minimum) of g and so

0 = g′(0) = ∂f(x0)
∂xi

⇒ ∇f(x0) = 0

Example 12.5

Let f(x, y) = x2 − y2 defined on R2, then

∇f(x, y) = (2x,−2y)

hence (0, 0) is a critial point of f , but it is neither a local maximum nor a local minimum.

Definition 12.6: Saddle Point

A critial point of f that is neither a local maximum nor a local minimum is called a saddle point.
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In order to clarify stationary point we need more linear algebra.

Definition 12.7

Let A ∈ Mn(R) be a symmetric matrix, we say

1. A is positive definite if (Aξ) · ξ > 0 for all 0 ̸= ξ ∈ RN ;

2. A is positive semidefinite if (Aξ) · ξ ≥ 0 for all ξ ∈ RN ;

3. A is negative definite if (Aξ) · ξ < 0 for all 0 ̸= ξ ∈ RN ;

4. A is negative semidefinite if (Aξ) · ξ ≤ 0 for all ξ ∈ RN ;

5. A is indefinite if there are x, y ∈ RN with (Ax) · x > 0 and (Ay) · y < 0.

Example 12.6

For an instance,
[

2 −1
−1 2

]
is positive definite, I is positive definite, and

1 0 0
0 1 0
0 0 −1

 is indefinite.
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In order to prove the Theorem (12.3), we first prove the following Lemma:

Lemma 12.2

Suppose f ∈ C2(D), and x0 ∈ D be such that (Hess f)(x0) is positive definite (or negative definite).
Then there exists δ > 0 such that for x ∈ D and x ∈ Bδ(x0), then (Hess f)(x) is positive definite (or
negative definite).

Proof. We will prove the statement for (Hess f)(x0) positive definite. Write Ax = (Hess f)(x0). Define
Q : RN → R, Q(ξ) = (Ax0ξ) · ξ. Then Q is continuous because it is the dot product of continuous functions
on RN . For all unit vectors ξ ∈ SN−1 = ∂B1(0), we have Q(ξ) > 0. Since SN−1 is compact, by the Extreme
Value Theorem, there exists r > 0 such that Q(ξ) ≥ r for all ξ ∈ SN−1. Since f ∈ C2(D), we can find δ > 0
such that Bδ(x0) ⊂ D and

N∑
i=1

|fxixi
(x) − fxixi

(x0)| +
∑
i ̸=j

∣∣fxixj
(x) − fxixj

(x0)
∣∣ < r

2

Then if x ∈ Bδ(x0), we have for ξ ∈ SN−1

|(Axξ) · ξ − (Ax0ξ) · ξ| =

∣∣∣∣∣∣
N∑
i=1

(fxixi
(x) − fxixi

(x0))ξ2
i +

∑
i ̸=j

(fxixj
(x) − fxixj

(x0))ξiξj

∣∣∣∣∣∣
≤

N∑
i=1

|fxixi(x) − fxixi(x0)| +
∑
i ̸=j

∣∣fxixj (x) − fxixj (x0)
∣∣ < r

2

66



This implies that for ξ ∈ SN−1:

(Axξ) · ξ > (Ax0ξ) · ξ − r

2 ≥ r − r

2 = r

2 > 0

so x ∈ Bδ(x0), and ξ ∈ RN\{0} and we get

(Axξ) · ξ = ∥ξ∥2
(
Ax

(
ξ

∥ξ∥

)
· ξ

∥ξ∥

)
> 0

Hence Ax is positive definite for all x ∈ Bδ(x0).

Theorem 12.3: Second Derivative Test

Let ∅ ̸= D ⊂ RN be open and f : D → R, f ∈ C2(D). Let x0 ∈ D be a critical point of f , then

1. If (Hess f)(x0) is positive definite, then f has an local minimum at x0;

2. If (Hess f)(x0) is negative definite, then f has an local maximum at x0;

3. If (Hess f)(x0) is indefinite, then f has an saddle point at x0;

Discovery 12.3

For an example where the above Theorem (12.3) does not apple, see A4.

Proof. 1. Suppose (Hess f)(x0) is positive definite. Let δ > 0 be such that (Hess f)(γ) is positive definite
for all γ ∈ Bδ(x0) ⊂ D. Take x ∈ Bδ(x0). Write ξ := x − x0, so that ∥ξ∥ < δ. By Taylor’s Theorem
(12.2), there exists θ ∈ (0, 1) such that

f(x0 + ξ) = f(x0) + ∇f(x0) · ξ + 1
2(Hess f)(x0 + θξ) · ξ

= f(x0) + 1
2 [(Hess f)(x0 + θξ) · ξ]

Then
f(x) − f(x0) = f(x0 + θξ) − f(x0) = 1

2(Hess f(x0 + θξ)ξ) · ξ > 0

Hence x0 is a local minimum for f ;

2. Follows as in (1);

3. Suppose (Hess f)(x0) is indefinite, we want to show that given ε > 0, there are x, y ∈ Bε(x0) ∩D such
that

f(x) < f(x0) < f(y)

Let ξ1, ξ2 be unit vectors in RN such that

(Hess f)(x0)ξ1 · ξ1 < 0 and (Hess f)(x0)ξ2 · ξ2 > 0
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Arguing as in the proof of Lemma (12.2), we can find δ > 0 such that Bδ(x0) ⊂ D and if x ∈ Bδ(x0),

(Hess f)(x)ξ1 · ξ1 < 0 and (Hess f)(x)ξ2 · ξ2 > 0

Then given ε > 0, set ε′ = min{δ, ε} and let ξε′ := ε′

2 ξ1 and ηε′ := ε′

2 ξ2. So x0 + ξε′ , x0 + ηε′ ∈ Bδ(x0).
By Taylor’s Theorem (12.2), there are θ1, θ2 ∈ (0, 1) such that

f(x0 + ξε′) = f(x0) +
(
ε′

2

)
· 1

2(Hess f)(x0 + ξε′)ξ1 · ξ1

f(x0 + ηε′) = f(x0) +
(
ε′

2

)
· 1

2(Hess f)(x0 + ηε′)ξ2 · ξ2

Setting x = x0 + ξε′ and y = x0 + ηε′ we see that x, y ∈ Bε(x0) and by (1), f(x) < f(x0) < f(y).

Theorem 12.4

Let A = (αij)i,j ∈ Mn(R) be symmetric. TFAE:

1. A is positive definite (or negative definite);

2. All eigenvalues of A are positive (or negative);

3. det


α11 α12 · · · α1k

α21
. . .

... . . .
αk1 αkk

 > 0

or (−1)k det


α11 α12 · · · α1k

α21
. . .

... . . .
αk1 αkk

 > 0

 for all k = 1, . . . , N .

Corollary 12.3: Second Derivative Test in R2

Let ∅ ̸= D ⊂ R2 be open, f : D → R, f ∈ C2(D). Let x0 ∈ D be a critical point of f , then

1. If fxx(x0) > 0 and fxx(x0)fyy(x0) − fxy(x0)2 > 0, then x0 is a local minimum of f ;

2. If fxx(x0) < 0 and fxx(x0)fyy(x0) − fxy(x0)2 > 0, then x0 is a local maximum of f ;

3. If fxx(x0)fxx(x0) − fxy(x0)2 < 0, then x0 is a saddle point of f ;

Proof. (1) and (2) are clear. For (3), let λ1, λ2 be the eigenvalues of (Hess f)(x0), then

fxx(x0)fxx(x0) − fxy(x0)2 = det((Hess f)(x0)) = λ1λ2 ⇒ λ1λ2 < 0

So λ1 and λ2 have opposite signs. If ξ1, ξ2 are eigenvectors, we have (Hess f)(x0)ξ1 ·ξ1 and (Hess f)(x0)ξ2 ·ξ2

have opposite signs. Hence (Hess f)(x0) is indefinite.

Lecture 26 - Friday, Jul 5
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Example 12.7

Let K = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and let f : K → R, f(x, y) = x2 − xy + y2. Find the global
maximum and minimum of f on K.

Proof. Since K is compact and f is continuous, we know from the Extreme Value Theorem that the problem
has a solution. Let D = K◦ = B1((0, 0)). We have fx = 2x − y and fy = 2y − x. Then (0, 0) is the only
critial point of f in D. We have fxx = 2, fyy = 2, and fxy = −1, so

(Hess f)(0, 0) =
[

2 −1
−1 2

]

Then fxx > 0, and fxxfyy − f2
xy > 0, thus (Hess f)(0, 0) is positive definite. By second derivative test, f has

local minimum at (0, 0). Now we want to verify

∂K = {(x, y) : x2 + y2 = 1} = {(cos θ, sin θ) : 0 ≤ θ ≤ 2π}

Consider g(0) = f(cos θ, sin θ) = cos2 θ − cos θ sin θ + sin2 θ = 1 − cos θ sin θ = 1 − sin(2θ)
2 , we have g(0) ≥ 1

2 .
Hence f attains its minimum on K at (0, 0) since f(0, 0) = 0. We have g′(0) = − cos(2θ). Thus the crital
points of g in (0, 2π) are θ1 = π

4 , θ2 = 3π
4 , θ3 = 5π

4 , and θ4 = 7π
4 . Now g′′(0) = 2 sin(2θ) gives that

g′′(θ1) = 2 = g′′(θ3) and g′′(θ2) = −2 = g′′(θ4)

Also g(0) = 1 = g(2π), so θ2 and θ4 are local maximum of g. Compute g(θ2) = 3
2 = g(θ4). It follow that f

attains its maximum at (cos(θ2), sin(θ2)) =
(

−
√

2
2 ,

√
2

2

)
and at (cos(θ4), sin(θ4)) =

(√
2

2 ,−
√

2
2

)

69



13 Local Properties of Continuously differentiable function

13.1 Inverse Function Theorem

Roughly, the IFT states that if D ⊂ RN , f : D → RN , f ∈ C1(D,RN ) and (Df)(x0) is invertible, then
there exists an open neighborhood U of x0 such that f is one-to-one on U , and f−1 : f(U) → RN is also
continuously differentiable.

Definition 13.1: Contraction

Let ∅ ̸= S ⊂ RN and φ : S → S, we say that φ is a contraction if there exists 0 ≤ c < 1 such that

∥φ(x) − φ(y)∥ ≤ c ∥x− y∥ ∀ x, y ∈ S

Theorem 13.1: Contradiction Mapping Principle

Let ∅ ̸= F ⊂ RN be closed and φ : F → F be contraction. Then there exists a unique x∗ ∈ F such
that φ(x∗) = x∗ (i.e. f has a unique fixed point x∗ ∈ F ).

Proof. For uniqueness, suppose x∗, y∗ are fixed point of φ, then

∥x∗ − y∗∥ = ∥φ(x∗) − φ(y∗)∥ ≤ c ∥x∗ − y∗∥ < ∥x∗ − y∗∥

Hence we must have x∗ = y∗. For existence of x∗, take x0 ∈ F , define an sequence (xn) in F recursively by
setting xn = φ(xn−1) for n ≥ 1, so we have for n = 1,

∥xn+1 − xn∥ = ∥x2 − x1∥ = ∥φ(x1) − φ(x0)∥ ≤ c ∥x1 − x0∥

∥x3 − x2∥ = ∥φ(x2) − φ(x1)∥ ≤ c ∥x2 − x1∥ ≤ c2 ∥x1 − x0∥

Continuing with this process by induction we obtain for all n ≥ 1,

∥xn+1 − xn∥ = ∥φ(xn) − φ(xn−1)∥ ≤ cn ∥x1 − x0∥

Then if m > n ≥ 1, we have

∥xm − xn∥ =
∥∥∥∥∥
m−1∑
k=n

(xk+1 − xk)
∥∥∥∥∥ ≤

m−1∑
k=n

∥(xk+1 − xk)∥ ≤
m−1∑
k=n

ck ∥x1 − x0∥

Since the sum
∑∞
k=1 c

k ∥x1 − x0∥ converges because 0 ≤ c < 1, we deduce that (xn) is a Cauchy Sequence.
We let x∗ := limn→∞ xn, then x∗ ∈ F because F is closed. Since φ is continuous, we get

φ(x∗) = lim
n→∞

φ(xn) = lim
n→∞

xn+1 = x∗

proving that x∗ is a fixed point of φ.
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Theorem 13.2

Let ∅ ̸= D ⊂ RN be an open convex set. Let f : D → RM be differentiable and suppose there exists
R ∈ R such that ∥Df(x)∥ ≤ R for all x ∈ D. Then for all x, y ∈ D, we have

∥f(x) − f(y)∥ ≤ R ∥x− y∥

Proof. Fix x, y ∈ D, x ̸= y and consider g : D → R, g(z) = (f(x) − f(y)) · f(z). Then g is differentiable
and ∇g(z) = (f(x) − f(y))T (Df)(z) by Product Rule (10.2). By A3-Q3, there exists ξ in the line segment
between x, y such that

g(x) − g(y) = ∇g(ξ) · (x− y)

Thus

∥f(x) − f(y)∥2 = (f(x) − f(y))T (Df)(ξ)(x− y)
⇒ ∥f(x) − f(y)∥2 ≤ ∥f(x) − f(y)∥R ∥x− y∥

giving us ∥f(x) − f(y)∥ ≤ R ∥x− y∥.

Lecture 27 - Monday, Jul 8

Theorem 13.3: The Inverse Function Theorem

Let ∅ ̸= D ⊂ RN be open and f ∈ C1(D,RN ). Let x0 ∈ D be such that (Df)(x0) is invertible and set
y0 := f(x0), then

1. There exists an open set U ⊆ D, V ⊂ RN with x0 ∈ U , y0 ∈ V , f is one-to-one on U and
V := f(U);

2. If g : V → RN is the inverse of f defined on V (i.e. g(f(x)) = x for x ∈ U), then g is continuously
differentiable and

(Dg)(y) = [(Df)(g(y))]−1

Discovery 13.1

(Df)(x0) is invertible if and only if det(Jf (x0)) ̸= 0.

If we write f(x1, . . . , xN ) = (f1(x1, . . . , xN ), . . . , fN (x1, . . . , xN )),

y1 = f1(x1, . . . , xN )
...

yN = fN (x1, . . . , xN )
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Result 13.1

Then the IFT (Inverse Function Theorem 13.3) tells us that the system given above can be solved
for x1, . . . , xN in terms of y1, . . . , yN when we restrict to a small neighborhood of x0 and y0, and the
solution is continuously differentiable.

Example 13.1

Let u = x4+y4

x and v = sin x+ cos y. Can we sovle the system above for x and y in terms of u and v?
We have

Jf (x, y) =
[

3x4−y4

x2
4y3

x

cosx − sin y

]

⇒ det(Jf (x, y)) = − sin y
(

3x4 − y4

x2

)
− cosx · 4y3

x

If, for example, x0 = (x, y) =
(
π
2 ,

π
2
)
, then

det(Jf (x0)) = −
[
3
(π

2

)2
−
(π

2

)2
]

= −2
(π

2

)2
̸= 0

Hence the IFT (13.3) says that near x0 we can solve the system for x and y in terms of u and v.

Proof. This is the proof for IFT (13.3)
The formula for (Dg)(y) follows from Q5c in the Midterm Exam.

1. For part 1:
Set A = (Df)(x0). Let U be an open ball such that

∥(Df)(x) −A∥ < λ where λ = 1
2 ∥A−1∥

This exists becasue f is continuously differentiable. We can also find that (Df)(x) is invertible for all
x ∈ U (See A4Q5). For y ∈ RN fixed, define φy : D → RN by

φy(x) = x+A−1(y − f(x))

(a) Claim 1 : y = f(x) if and only if x is a fixed point of φy
Indeed, y = f(x) gives φy(x) = x since A−1(y − f(x)) = 0. Conversely, if φy(x) = x, then
A−1(y − f(x)) = 0, which implies that y − f(x) = 0 because A−1 is one-to-one.

(b) Claim 2 : ∥φy(x) − φy(z)∥ ≤ 1
2 ∥x− z∥ for all x, z ∈ U

Notice that φy(x) = Ix+A−1y −A−1f(x), so by the Chain Rule (10.3), φy is differentiable and

(Dφy)(x) = I −A−1(Df)(x)

72



Then

∥(Dφy)(x)∥ =
∥∥A−1A−A−1(Df)(x)

∥∥ =
∥∥A−1(A− (Df)(x))

∥∥
≤
∥∥A−1∥∥ ∥A− (Df)(x)∥

<
∥∥A−1∥∥ 1

2 ∥A−1∥
= 1

2

Hence by Theorem (13.2), we have ∥φy(x) − φy(z)∥ ≤ 1
2 ∥x− z∥ for all x, z ∈ U .

This shows that φy has at most one fixed point in U , so f is one-to-one in U by Claim 1. Set V = f(U),
we will show that V is open. Let w ∈ V and let z ∈ U be such that w = f(z). Let r > 0 be such that
Bz = Br(z) ⊂ U , we will find δ > 0 such that if ∥y − w∥ < δ, then φy(Bz) ⊂ Bz. First, notice that if
x ∈ Bz, then by Claim 2,

∥φy(x) − φy(z)∥ ≤ 1
2 ∥x− z∥ = r

2
Let δ := λr, and let y ∈ RN , ∥y − w∥ < δ, then

∥φy(z) − z∥ =
∥∥z +A−1(y − f(z)) − z

∥∥ =
∥∥A−1(y − w)

∥∥ ≤
∥∥A−1∥∥ ∥y − w∥ <

∥∥A−1∥∥ · r

2 ∥A−1∥
= r

2

Then if ∥y − w∥ < δ, and x ∈ Bz, we have

∥φy(x) − z∥ ≤ ∥φy(x) − φy(z)∥ + ∥φy(z) − z∥

≤ r

2 + r

2 = r

giving that φy(Bz) ⊂ Bz. By the Contraction Mapping Principle, φy has a unique fixed point x∗ ∈ Bz,
so y = f(x∗) ∈ f(U) = V by Claim 1. This shows that f(U) is open.

2. For part 2:
Let g : V → RN be the inverse of f on U . Let y ∈ V , y + k ∈ V , and let x, x+ h ∈ U be such that

f(x) = y, f(x+ h) = y + k

Notice that h is uniquely determined by k.

Lecture 28 - Wednesday, Jul 10

Notice that

φy(x+ h) − φy(x) = h+A−1(y − f(x+ h))
= h−A−1k

Thus by Claim 2,

∥∥h−A−1k
∥∥ ≤ 1

2 ∥x+ h− x∥ = ∥h∥
2 ⇒

∥∥A−1k
∥∥− ∥h∥ ≤ ∥h∥

2
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giving that
∥∥A−1k

∥∥ ≥ ∥h∥
2 . Hence

∥h∥ ≤
∥∥A−1∥∥ · 2 · ∥k∥ = λ−1 ∥k∥

Let T = [(Df)(x)]−1, then

g(y + k) − g(y) − Tk = h− Tk

= TT−1h− Tk

= T ((Df)(x)h− (f(x+ h) − f(x)))

Now we have
∥g(y + k) − g(y) − Tk∥

∥k∥
≤ ∥T∥ ∥f(x+ h) − f(x) − (Df)(x)h∥

λ ∥h∥

Taking the limit of k approaches 0, then h approaches 0, and it follows that

lim
k→0

∥g(y + k) − g(y) − Tk∥
∥k∥

= 0

proving that g is differentiable at y. Finally, we will show that g ∈ C1(V,RN ), that is, y ∈ V 7→ Jg(y)
is continuous. This follows because the map is the composition

V −→g U −→Jf GLN (R) −→−1 GLN (R)

All the maps are continuous (See A4Q5), hence g ∈ C1(V,RN ).

Theorem 13.4: Open Mapping Theorem

Let ∅ ̸= D ⊂ RN be open, f ∈ C1(D,RN ). Suppose that (Df)(x) is invertible for all x ∈ D, then for
every W ⊂ D open, f(W ) ⊂ RN is also open.

Proof. Exercise.

13.2 Implicit Function Theorem

Definition 13.2: Level Curves

Let f be a function defined on R2, we write z = f(x, y). The level curve of f determined by c ∈ R in
the set of all points in R2 such that f(x, y) = c.

We wish to locally express the set of points f(x, y) = 0 as the graph of a function y = g(x).

Example 13.2

f(x, y) = x2 − y, so f(x, y) = 0 given y = x2. Take g(x) = x2.
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Example 13.3

f(x, y) = x2 + y2 − 1; Near (1, 0), we cannot express the set f(x, y) = 0 as the graph of a function of
y = g(x).

Definition 13.3

We will write (x, y) ∈ RN+M as

(x, y) = (x1, . . . , xN , y1, . . . , yM )

given a system of equations

f1(x1, . . . , xN , y1, . . . , yM ) = 0,
...

fq(x1, . . . , xN , y1, . . . , yM ) = 0

we want to locally express y in terms of x, so that y1 = g1(x1, . . . , xN ), . . . , yM = gM (x1, . . . , xN ).
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13.2.1 The Linear Case

Suppose f(x, y) = A

[
x

y

]
, A ∈ MM×(N+M)(R). In the case

A =
[
Ax Ay

]
Ax ∈ MM×N (R), Ay ∈ MM×M (R)

we have f(x, y) = 0 gives Axx + Ayy = 0. From linear algebra we know that if Ay is invertible, then the
equation Axx+Ayy = 0 uniquely determines y in terms of x by

y = −A−1
y Axx

In general, given a linear transformation A : RN+M → RM , we can split A into two linear transformations
Ax : RN → RM and Ay : RM → RM , where Ax(x) = A(x, 0) and Ay(y) = A(0, y), so that

A(x, y) = Ax(x) +Ay(y)

If f is differentiable, A = Jf (x0), write Ax = ∂f
∂x , Ay = ∂f

∂y .

Theorem 13.5: Implicit Function Theorem

Let ∅ ̸= D ⊂ RN+M be open and f ∈ C1(D,RM ). Let (x0, y0) ∈ RN+M be such that f(x0, y0) = 0
and let A = (Df)(x0, y0). Suppose that Ay is invertible, i.e.

det


∂f1
∂y1

· · · ∂f1
∂yM

...
∂fM

∂y1
· · · ∂fM

∂yM

 ̸= 0 at (x0, y0).

Then there exists an open neighbourhood U ⊂ D of (x0, y0) and W ⊂ RN , open neighbourhood of x0,
such that

1. For every x ∈ W , there exists a unique yx such that (x, yx) ∈ U such that f(x, yx) = 0.

2. If we define g : W → RM , g(x) = y, where y is as in part (a), then g is continuously differentiable
(g ∈ C1(W,RM )), (x, y) ∈ U and f(x, y) = 0, ∀x ∈ W , and

(Dg)(x0) = −A−1
y Ax

Discovery 13.2

The function g is implicitly defined by the equation f(x, y) = 0.
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Lecture 29 - Friday, Jul 12

Proof. Define F := D → RN+M by F (x, y) = (x, f(x, y)). Then F is continuously differentiable because f
is. Our claim is that (DF )(x0, y0) is invertible. Indeed, we have

JF (x0, y0) =
[
IN 0N×M
∂f
∂x

∂f
∂y

]

Then because Ay is invertible,
det JF (x0, y0) = det IN · det ∂f

∂y
̸= 0

Then the Inverse Function Theorem (13.3) gives us an open neighborhood U ⊂ D of (x0, y0) such that
V := F (U) is open, F is one-to-one on U , and G : V → U ⊂ RN+M is also continuously differentiable.
We define W ⊂ RN by W := {w ∈ RN : (x, 0) ∈ V }, then x0 ∈ W because (x0, y0) is in U and F (x0, y0) =
(x0, 0M ). Also, W is open because V is open. If x ∈ W , then because V = F (U), there exists (x′, y′) ∈ U

such that F (x′, y′) = (x′, f(x′, y′)) = (x, 0), which shows that x′ = x and f(x, y′) = 0.
Now we wish to show uniqueness. Suppose y1, y2 ∈ RM are such that (x, y1), (x, y2) ∈ U and f(x, y1) =
f(x, y2) = 0. It follows that F (x, y1) = (x, 0M ) = F (x, y2). Because F is one-to-one on U , thus we must
have y1 = y2, proving part (a).
For part (b), let g : W → RM , g(x) = y. Consider G(x, 0) = (x, g(x)), since G ∈ C1(V,RN+M ) (is continuous
differentiable), we must have that g ∈ C1(W,RM ). Then we compute (Dg)(x0). Consider ϕ : W → RN+M ,
ϕ(x) = (x, g(x)), then ϕ ∈ C1(W,RN +M), ϕ(x0) = (x0, y0). Also, for all x ∈ W and h ∈ RN

(Dϕ)(x)h = (h,Dg(x)h)

In terms of the Jacobian Matrix of ϕ at x,

Jϕ(x) =
[
IN

Jg(x)

]

Now f(ϕ(x)) = 0 for all x ∈ W . Applying the Chain Rule (10.3) we get

(Df)(ϕ(x))(Dϕ)(x) = 0 ∀x ∈ W

Thus for x = x0 and h ∈ RN , (Df)(x0, y0)(Dϕ)(x0) = 0, add

(Df)(x0, y0)(Dϕ)(x0)h = 0
(Df)(x0, y0)(h, (Dg)(x0)h) = 0

⇒ Axh+Ay(Dg)(x0)h = 0

Since A = (Df)(x0, y0), this yields
(Dg)(x0)h = −A−1

y Axh

because Ay is invertible. Hence (Dg)(x0) = −A−1
y Ax as needed.
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Discovery 13.3

Above we only needed Ay invertible to obtain (Dg)(x0) = −A−1
y Ax. Since the set of invertible linear

tranformations is open, we can assume that ∂f
∂y is invertible for all (x, y) ∈ U and hence

(Dg)(x) = −
(
∂f

∂y

)−1
∂f

∂x
∀x ∈ W

Example 13.4

Consider the system of equations,2ey1 + y2x1 − 4x2 + 3 = 0
y2 cos y1 − 6y1 + 2x1 − x3 = 0

where there are five variables and two equations:

N +M = 5, M = 2

It is easy to check that (3, 2, 7, 0, 1) is a solution. Can we solve the solution near (3, 2, 7, 0, 1) by (x, g(x))
where g : W → R2, W ⊂ R3.
Let f : R3 → R2, f(x1, x2, x3, y1, y2) = (f1(x, y), f2(x, y)) where

f1(x, y) = 2ey1 + y2x1 − 4x2 + 3
f2(x, y) = y2 cos y1 − 6y1 + 2x1 − x3

We have f ∈ C1(R5,R2) and

Jf (x, y) =
[
y2 −4 0 2ey1 x1

2 0 −1 −y2 sin y1 − 6 cos y1

]

At (3, 2, 7, 0, 1)

Jf (3, 2, 7, 0, 1) =
[

1 −4 0 2 3
2 0 −1 −6 1

]
Hence

Ax =
[

1 −4 0
2 0 −1

]
, Ay =

[
2 3

−6 1

]
Now detAy = 2 + 18 = 20 ̸= 0, so Ay is invertible. Thus by the Implicit Function Theorem (13.5),
there exists an open neighborhood W ⊂ R3, of (3, 2, 7), and g : W → R2, continuously differentiable
with g(3, 2, 7) = (0, 1). Also

f(x, g(x)) = 0 ∀x ∈ W
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We have (Dg)(3, 2, 7) = −A−1
y Ax, where A−1

y = 1
20

[
1 −3
6 2

]
, thus

(Dg)(3, 2, 7) =
[

1
4

1
5

3
20

− 1
2

6
5

1
10

]

This does not give the partial derivative of g at (3, 2, 7).

Lecture 30 - Monday, Jul 15

14 Integration on RN

Suppose f : [a, b] → R, f ≥ 0, f is Riemann Integrable. Then∫ b

a

f dx

represents the area under the graph of f :

x

y

∫
f dx is defined as the limit of Riemann Sums, so that

∫
f dx ≈

n∑
i=1

f(xi)(xi − xi−1)

Suppose f : [a, b] × [c, d] → R, f(x) = e, e ≥ 0, then we expect the
∫
f to be the “volume” under the graph

of f , so that ∫
f = e · (b− a) · (d− c)

We wish to define th Riemann integral of f : A → R, f ≥ 0 via a limit process.
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We start by considering function defined on rectangles

I = [a1, b1] × [a2, b2] × · · · × [aN , bN ] ⊂ RN

Definition 14.1: Volumn (Content)

We define the volume of I (also called the content of I ) by

µ(I) = V ol(I) =
N∏
i=1

(bi − ai)

Definition 14.2: Partition

For each j = 1, . . . , N , let a = tj,0 < tj,1 < · · · < tj,nj
= bj be a partition of the closed interval [aj , bj ],

and define
Pj = {tj,l : l = 0, . . . , nj}

Then the Cartesian Product P = P1 × · · · × PN is called a partition of I. A partition P of I gives
the subdivision of I into n1 × · · · ×nN subrectangles, which are called the subrectangles corresponding
to P . So for each j and 1 ≤ kj ≤ N , we have a subrectangle

I = [t1,k1−1, t1,k1 ] × [t2,k2−1, t2,k2 ] × · · · × [tN,kN −1, tN,kN
]

t1,0 = a1 t1,1 t1,2 b1 = t1,3

a2 = t2,0

t2,1

t2,3

b2 = t4

Figure 1: Subdivision generated by a partition
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14.1 Riemann Sum

Definition 14.3: Riemann Sum

Let I = [a1, b1] × · · · × [aN , bN ] ⊂ RN be a rectangle and f : I → RM be a function. Let P be a
partition of I. For each rectangle Iα in the subdivision of I corresponding to P choose xα ∈ Iα, then
the sum

S(f, P ) :=
∑
α∈P

f(xα)µ(Iα)

is called the Riemann Sum of f corresponding to P .

Discovery 14.1

Notice that the sum S(f, P ) depends on the partition P and also on the choice of points xα ∈ Iα.

Definition 14.4: Refinement

Let P = P1 × · · · × PN be a partition of I, we say that a partition Q is a refinement of P if Pj ⊂ Qj

for all j = 1, . . . , N .

Discovery 14.2

Suppose P is a partition of I, then

I =
⋃
α∈P

Iα and µ(I) =
∑
α∈P

µ(Iα)

Proof. Prove this by induction on N . The result holds because the rectangles Iα’s may overlap at most along
their boundaries, so Q is a refinement of P , then for each α ∈ P ,

Iα =
⋃

β∈Q

Jβ⊂Iα

and so µ(Iα) =
∑
β∈Q

Jβ⊂Iα

µ(Jβ)

Discovery 14.3

Suppose P and Q are partitions of I, then there is always a common refinement R of P and Q. For
example,

R = R1 × · · · ×RN

where Rj := Pj ∪Qj for j = 1, . . . , N .
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14.2 Riemann Integrable

Definition 14.5: Riemann integrable

Let I ⊂ RN be a rectangle and f : I → RM be a function. Suppose that there exists y ∈ RM such that
for every ε > 0, there exists a partition Pε of I such that for each refinement P of Pε and all Riemann
sums S(f, P ) corresponding to P , we have

∥S(f, P ) − y∥ < ε

Then we say that f is Riemann integrable and y is the Riemann integral of f .
Notation:

y =
∫
I

f

∫
f dµ

∫
I

f(x1, . . . , xN ) dµ(x1, . . . , xN )

Proposition 14.1

Suppose f : I → RM is Riemann integrable, then
∫
I

f is unique.

Proof. Exercise. (The proof uses the uniqueness of limit).

14.2.1 Cauchy Criterion for Riemann Integrable

Theorem 14.1: Cauchy Criterion for Riemann integrable

Let I ⊂ RN be a rectangle and f : I → RM , TFAE:

1. f is Riemann integrable;

2. For every ε > 0, there exists a partition Pε such that for all refinement P and Q of Pε and all
Riemann sum S(f, P ) and S(f,Q) corresponding to P and Q respectively, we have

∥S(f, P ) − S(f,Q)∥ < ε

Lecture 31 - Wednesday, Jul 17

Proof. 1. (=⇒)
Given ε > 0, let Pε be a partition of I such that∥∥∥∥S(f, P ) −

∫
I

f

∥∥∥∥ < ε

2

for all refinements P of Pε and Riemann sums S(f, P ). Thus if P and Q are refinements of Pε and
S(f, P ) and S(f,Q) are Riemann sums corresponding to P and Q respectively, we have

∥S(f, P ) − S(f,Q)∥ < ε

2 + ε

2 = ε
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2. (⇐=)
Suppose 2. holds. Then for every ε = 1

2n there exists a partition Pn of I such that

∥S(f, P ) − S(f,Q)∥ < 1
2n

for all refinements P and Q of Pn, and all Riemann sums S(f, P ) and S(f,Q). By taking common refinements
if necessary, we may assume that Pn+1 is a refinement of Pn and in particular

∥S(f, Pn+1) − S(f, Pn)∥ < 1
2n

for all Riemann sums corresponding to Pn and Pn+1 respectively. For each n let yn be a Riemann sum
corresponding to the subdivision of I given by Pn. Thus ∥yn+1 − tn∥ < 1

2n for all n. It follows that (yn) is
a Cauchy sequence. Set y := limn→∞ yn. We will show that y =

∫
I
f . Let ε > 0 be given. Choose k such

that ∥y − yn∥ < ε
2 for all n ≥ k. Let n ≥ k such that 1

2n < ε
2 . Set Pε := Pn. Let P be a refinement of Pn

and S(f, P ) be a Riemann sum. By (10), ∥S(f, P ) − yn∥ < 1
2n < ε

2 . Thus

∥S(f, P ) − y∥ < ∥S(f, P ) − yn∥ + ∥yn − y∥ < ε

2 + ε

2 = ε

giving that y =
∫
I
f , and f is Riemann integrable.

Discovery 14.4

Let I ⊂ RN be a rectangle and f : I → RM be a function. Then f is Riemann integrable if and only if
each component fj : I → R, j = 1, . . . ,M of f is Riemann integrable (see A5).

Corollary 14.1

Let I ⊂ RN be a rectangle and f : I → RM be a function. TFAE:

1. f is Riemann integrable;

2. For every ε > 0, there exists a partition Pε of I such that

∥S1(f, Pε) − S2(f, Pε)∥ < ε

for all Riemann sums S1(f, Pε) and S2(f, Pε) corresponding to Pε.

Proof. 1. =⇒ 2. is by Theorem 5.7.
2. =⇒ 1. Suppose 2. holds. By the preceding remark, we may assume M = 1. Let ε > 0 be given

and let Pε be a partition of I as in 2. Let P and Q be refinements of Pε and let

S(f, P ) =
∑
β∈P

f(xβ)µ(Jβ) and S(f,Q) =
∑
γ∈Q

f(xγ)µ(Kγ)
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be Riemann sums associated to P and Q respectively. Then for each α ∈ Pε we have

Iα =
⋃

β∈P,Jβ⊆Iα

Jβ =
⋃

γ∈Q,Kγ ⊆Iα

Kγ

and
µ(Iα) =

∑
β∈P,Jβ⊆Iα

µ(Jβ) =
∑

γ∈Q,Kγ ⊆Iα

µ(Kγ)

by Discovery (14.2). For each α ∈ Pε let

Bα = {f(xβ) | β ∈ P, Jβ ⊆ Iα} ∪ {f(xγ) | γ ∈ Q,Kγ ⊆ Iα}

Then Bα is finite and we let zα, wα ∈ Iα such that

f(zα) = maxBα, f(wα) = minBα.

Then

f(wα) ≤ f(xβ) ≤ f(zα), ∀β ∈ P, Jβ ⊆ Iα

f(wα) ≤ f(xγ) ≤ f(zα), ∀γ ∈ P,Kγ ⊆ Iα.

We have

S(f, P ) − S(f,Q) =
∑
β∈P

f(xβ)µ(Jβ) −
∑
γ∈Q

f(xγ)µ(Kγ)

=
∑
α∈Pε

 ∑
β∈P,Jβ⊆Iα

f(xβ)µ(Jβ) −
∑

γ∈Q,Kγ ⊆Iα

f(xγ)µ(Kγ)


≤
∑
α∈Pε

f(zα)
∑

β∈P,Jβ⊆Iα

µ(Jβ) − f(wα)
∑

γ∈Q,Kγ ⊆Iα

µ(Kγ)


=
∑
α∈Pε

f(zα)µ(Iα) −
∑
α∈Pε

f(wα)µ(Iα)

= S1(f, Pε) − S2(f, Pε) < ε.

Similarly,
S(f, P ) − S(f,Q) ≤ S1(f, Pε) − S2(f, Pε) > −ε =⇒ ∥S(f, P ) − S(f,Q)∥ < ε

by Theorem (14.1) (2. =⇒ 1.), f is Riemann integrable.

Theorem 14.2

Let I ⊂ RN be a rectangle and f : I → RM be continuous. Then f is Riemann integrable.

Proof. Since I is compact and f is continuous, then f is uniformly continuous on I. Given ε > 0, let δ > 0
be such that

∥f(x) − f(y)∥ < ε

µ(I)
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for all x, y ∈ I, ∥x− y∥ < δ. Choose a partition Pε of I such that x, y ∈ Iα, ∥x− y∥ < δ for all α ∈ Pε.
Let

S1(f, Pε) =
∑
α∈Pε

f(xα)µ(Iα), S2(f, Pε) =
∑
α∈Pε

f(yα)µ(Iα)

be Riemann sums corresponding to Pε. Then

∥S1(f, Pε) − S2(f, Pε)∥ =
∥∥∥∥∥∑
α∈Pε

(f(xα) − f(yα))µ(Iα)
∥∥∥∥∥

≤
∑
α∈Pε

∥f(xα) − f(yα)∥µ(Iα)

<
∑
α∈Pε

ε

µ(I)µ(Iα)

= ε

since xα, yα ∈ Iα =⇒ ∥xα − yα∥ < δ. By Corollary (14.1), f is Riemann integrable.

Lecture 32 - Friday, Jul 19

14.3 Content Zero

Definition 14.6: Content Zero

We say that a set A ⊂ RN has content zero, write µ(A) = 0, if for every ε > 0, the rectangle I1, . . . , In

(may overlap, finitely many) with

A ⊂
n⋃
j=1

Ij and
n∑
j=1

µ(Ij) < ε

Note: if A ⊂ B and B has a content zero, then A has content zero.

Example 14.1: Examples of content zero

1. Finite set;

2. If A1, . . . , Am have content zero, then their union has content zero;

3. If I ⊂ RN is a rectangle, then ∂I has content zero. This is because ∂I is a finite union of sets of
the form [a, b] × · · · × [ai−1, bi−1] × {ci} × [ai+1, bi+1] × [an, bn], where ci ∈ [ai, bi].

Proposition 14.2

Suppose K ⊂ RN is compact and f : K → R is continuous, then graph(f) = {(x, f(x)) : x ∈ K} ⊂
RN+1 has content zero.

Proof. See A5.
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Example 14.2: Examples of non-content zero

1. Z;

2. Q;

3. Q ∩ [0, 1].

14.4 Measure Zero

Definition 14.7: Measure Zero

Let A ⊂ RN , we say that A has measure zero if for every ε > 0, there are countably many (possibly
infinite) rectangles I1, I2, . . . in RN such that

A ⊂
∞⋃
j=1

Ij and
∞∑
j=1

µ(Ij) < ε

Discovery 14.5

1. A ⊂ B and B has measure zero implies that A has measure zero;

2. A has content zero implies A has measure zero; (How does this work? Choose all the subsequent
rectangles to be ∅, iykyk :3).

Proposition 14.3

Suppose A1, A2, . . . , An, . . . are subsets of RN with measure zero, then A =
⋃∞
i=1 Ai has measure zero.

Proof. Let ε > 0. For each i = 1, . . ., let Ii,1, Ii,2, . . . be a coutable collection of ractangles such that

Ai ⊂
∞⋃
j=1

Ii,j and
∞∑
j=1

µ[Ii,j ] <
ε

2i

Then

A ⊂
∞⋃
i=1

 ∞⋃
j=1

Ii,j

 and
∞∑
i=1

∞∑
j=1

µ[Ii,j ] <
∞∑
i=1

ε

2i = ε

Since N × N is countable, we get A has measure zero.

Example 14.3

Countable set have measure zero (e.g. Q, Z, Q ∩ [0, 1]), while [0, 1]\Q does not have measure zero.
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Theorem 14.3

Suppose K ⊂ RN is compact and has measure zero, then K has content zero.

Proof. Let ε > 0 and let I1, I2, . . . be rectangles with

K ⊂
∞⋃
j=1

Ij and
∞∑
j=1

µ[Ij ] <
ε

2

For each j choose I ′
j a rectangle with I

′◦
j ⊃ Ij and

µ(I ′
j) < µ(Ij) + ε

2j

By compactness, there are rectangles I ′
j1, . . . , I

′
jn such that

K ⊂
n⋃
i=1

I
′◦
ji ⊂

n⋃
i=1

I ′
ji

n∑
i=1

µ(I ′
ji) ≤

∞∑
j=1

µ(Ij)′ ≤
∞∑
j=1

(
µ(Ij) + ε

2j
)
< ε

Definition 14.8: “Has Content”

1. Let ∅ ̸= D ⊂ RN be bounded and let I ⊂ RN be rectangles containing D. We say that a function
f : D → RM is Riemann integrable on D if the f : I → RM given by f(x) = {f(x) : x ∈ D or 0 :
x otherwise} is Riemann integrable, in which case we define the integral of f on D by∫

D

f =
∫
I

f

2. Let ∅ ̸= D ⊂ RN be bounded, we say that D Has Content if the Characteristic Function
on D is integrable, where

XD : RN → RM , XD(x) =

1 if x ∈ D

0 otherwise

We define the content of D (the volume) by

µ(D) =
∫
D

XD =
∫
D

1

Discovery 14.6

If D = I is rectangle, then it coincides with the volume of I.
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14.5 Lebesgue Theorem

Theorem 14.4: Lebesgue Theorem

Let I ⊂ RN be a rectangle and let f : I → RM be bounded, then f is Riemann integrable if and only
if the set Bf = {x ∈ I : f is not countinuous at x} has measure zero.

Proof. Notice that we may assume M = 1 because

Bf =
M⋃
j=1

Bfj

where Bfj = {x ∈ I : fj is not countinuous at x}, fj is component of f .

1. (⇐=)
We define for x ∈ I the ocsillation of f at x by

o(f, x) = lim
δ→0

[M(x, f, δ) −m(x, f, δ)]

where M(x, f, δ) = sup{f(y) : y ∈ Bδ(x)} and m(x, f, δ) = inf{f(y) : y ∈ Bδ(x)}. The limit above
exists because the function

δ 7→ M(x, f, δ) −m(x, f, δ)

is decreasing. Notice also o(f, x) ≥ 0.

(a) Claim 1 : f is continuous at x if and only if o(f, x) = 0;

(b) Claim 2 : For every ε > 0 the set Bε = {x ∈ I : o(f, x) ≥ ε} is closed (in particular, Bε is
compact).

Proof. We will prove that Bcε ∩ I is relatively open in I. Let x ∈ I with o(f, x) < ε. Let δ > 0 be such
that M(x, f, δ) −m(x, f, δ) < ε. Let y ∈ Bδ(x) and take δy > 0 such that Bδy (y) ⊂ Bδ(x), then

M(y, f, δy) −m(y, f, δy) ≤ M(x, f, δ) −m(x, f, δ) < ε

giving that o(f, y) < ε. Thus Bε is relatively closed in I, so Bε is closed.

Lecture 33 - Monday, Jul 22

Notice that Bε ⊂ Bf by claim 1, hence Bε has measure zero. Thus Bε has content zero by Theorem
(14.3). Let ε > 0 be given, let U1, U2, . . . , Un be rectangles such that Bε ⊂

⋃n
j=1 U

◦
j (union of intervals)

and
∑n
j=1 µ(Ij) < ε. Let P ′

ε be a partition of I such that for each α ∈ P ′
ε, the rangles Iα has one of

the following properties:

(a) Iα ⊂ Uj for some j = 1, 2, . . . , n, or;

(b) Iα ∩Bε ̸= ∅.

88



This can be done by considering the rectangles Uj ∩ I, and because if

Iα ∩

 n⋃
j=1

(Uj ∩ I)◦

 = ∅

then Iα ∩Bε = ∅. Let M ≥ 0 be such that |f(x)| ≤ M for all x ∈ I, then

|f(xα) − f(yα) ≤ 2M ∀ xα, yα ∈ Iα|

Now we get ∣∣∣∣∣∣
∑

Iα⊂Uj for some j
[f(xα) − f(yα)]µ(Iα)

∣∣∣∣∣∣ ≤
∑

Iα⊂Uj for some j
|f(xα) − f(yα)|µ(Iα)

≤ 2M
∑

Iα⊂Uj for some j
µ(Iα)

≤ 2M
n∑
j=1

µ(Uj) = 2Mε

(a) Claim 3 : If α ∈ P ′
ε and Iα ∩Bε = ∅, then there exists a partition Pα of Iα such that

|f(xβ) − f(yβ)| ≤ 2ε ∀ xβ , yβ ∈ Jα,β

where Jα,β is a subrectangle in the in the subdivision corresponding to Pα.

Proof. Since Iα ∩Bε = ∅, we have ø(f, x) < ε for all x ∈ Iα. For each x ∈ Iα, let δx > 0 be such that

|f(y) − f(z)| < ε ∀ y, z ∈ Bδx(x)

then
Iα ⊂

⋃
x∈Iα

Bδx/2(x)

Let {x1, x2, . . . , xℓ} be such that

Iα ⊂
ℓ⋃
i=1

Bδxi
/2(xi)

Take δ = min{δxi
/2 : i = 1, . . . , ℓ}. Let Pα be a partition of Iα such that x, y belong to the subrectan-

gles, we have ∥x− y∥ < δ. It follows that if xβ , yβ ∈ Iα,β , then taking i such that xβ ∈ Bδxi
/2(xi), we

have yβ ∈ Bδxi
(xi). This gives |f(xβ) − f(yβ)| < 2ε.

It follows by Claim 3 that we can find a refinement Pε of P ′
ε with the properties above and also with

the additional property that |f(xα) − f(yα)| < 2ε, where α ∈ Pε and Iα ∩ Bε = ∅. Let S1(f, Pε) and
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S2(f, Pε) be Riemann sums corresponding to Pε, then∣∣∣∣∣∑
α∈Pε

[f(xα) − f(yα)]µ(Iα)
∣∣∣∣∣ ≤

∑
α∈Pε,Iα⊂Uj

|f(xα) − f(yα)|µ(Iα) +
∑

α∈Pε,Iα∩Uj=ε
|f(xα) − f(yα)|µ(Iα)

≤ 2Mε+ 2εµ(I)

Thus by Corollary 14.1, f is Riemann Integrable.

2. (=⇒)
Suppose f is Riemann integrable, for each n, let

B1/n = {x ∈ I : ø(f, x) ≥ 1
n

}

By Claim 1,

Bf =
∞⋃
n=1

B1/n

Thus STP that each B1/n has measure zero (in fact, content zero). Fix n and let ε > 0. Let Pε be a
partition of I such that

S1(f, Pε) − S2(f, Pε) <
ε

n

for all Riemann sums S1(f, Pε) and S2(f, Pε). Write

B1/n = C1 ∪ C2 where C1 = {x ∈ B1/n : x ∈ ∂Iα for some α}

C2 = {x ∈ B1/n : x ∈ I◦
α for some α}

Then C1 has content zero because each Iα does. Let

S = {Iα : I◦
α ∩ C2 ̸= ∅}

Then C2 ⊂
⋃
Iα∈S Iα. Given ε′ > 0, ε′ < 1/n, for each Iα ∈ S, we can find xα, yα ∈ Iα such that

f(xα) − f(yα) > 1
n

− ε′

since I◦
α ∩ C2 ̸= ∅. It follows that

0 ≤
∑
Iα∈S

(
1
n

− ε′
)
µ(Iα) ≤

∑
Iα∈S

(f(xα) − f(yα))µ(Iα)

= S1(f, Pε) − S2(f, Pε) <
ε

n

Since ε′ > 0, this yields that ∑
Iα∈S

µ(Iα)
2 ≤ ε

2 ⇒
∑
Iα∈S

µ(Iα) ≤ ε

so C2 has content zero as needed.
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Corollary 14.2

Let ∅ ̸= D ⊂ RN be bounded, TFAE:

1. D has content;

2. ∂D has content zero.

Corollary 14.3

Let ∅ ̸= D ⊂ RN be bounded and ∂D has content zero. If f : D → RM is continuous, then f is
Riemann integrable.

Corollary 14.4

Let f : I → RM and suppose the set of points at which f is discontinuous is countable, then f is
Riemann integrable.

Proposition 14.4: Properties of the Riemann integrable

Let ∅ ̸= D ⊂ RN be bounded, let f, g;D → RM be Riemann integrable, then

1. f + g is Riemann integrable, and; ∫
(f + g) =

∫
f +

∫
g

2. ∥f∥ : D → R, x 7→ ∥f(x)∥ is Riemann integrable, and;

3. If M = 1, f ≤ g, then ∫
f ≤

∫
g

4. If M = 1, D has content and r ≤ f ≤ R, then

rµ(D) ≤
∫
f ≤ Rµ(D)

Lecture 34 - Wednesday, Jul 24

14.5.1 Mean Value Theorem for Integration

Theorem 14.5: Mean Value Theorem for Integration

Let ∅ ̸= D ⊂ RN and f : D → R continuous on D. Suppose that D is compact, connected and has
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content. Then there exists x0 ∈ D such that∫
D

f = f(x0)µ(D)

Proof. Since D has content, and f is continuous, then f is Riemann integrable by Corollary (14.3). Let
r,R ∈ R such that

r ≤ f ≤ R

By extreme value theorem, there are p, q ∈ D such that

f(p) = r and f(q) = R

We have
rµ(D) ≤

∫
f ≤ Rµ(D)

so if µ(D) = 0,
∫
f = 0 and any x0 ∈ D satisfies the result. Assume µ(D) ̸= 0 and let

λ :=
∫
f

µ(D)

so f(p) ≤ λ ≤ f(q) and since D is connected, there exists by the intermediate value theorem x0 ∈ D such
that

f(x0) = λ =
∫
f

µ(D)

14.6 Fubini’s Theorem

How do we actually calculate the integral,
∫
D

f?

Example 14.4

Using a simple exmaple to show the idea: Suppose I = [a, b] × [c, d] ⊂ R2 and f : I → R continuous,
f ≥ 0. Hence

∫
f is the volume of the region under the graph of f . In particular, we have

∫
I

f =
∫ b

a

(∫ d

c

f(x, y) dy
)
dx =

∫ d

c

(∫ b

a

f(x, y) dx
)
dy

It could happen in general that for some x, the function y 7→ f(x, y) is not Riemann Integrable.

Theorem 14.6: Fubini’s Theorem

Let I ⊂ RN and J ⊂ RM be rectangles and f : I × J → RK be Riemann Integrable. Suppose that for
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each x ∈ I the function y ∈ J 7→ f(x, y) ∈ RK is Riemann integrable and let

h(x) =
∫
J

f(x, y) dy (x ∈ I)

Then h is integrable and ∫
I

(∫
J

f(x, y) dy
)
dx =

∫
I

h(x) dx =
∫
I×J

f

Discovery 14.7

A similar statement holds if x 7→ f(x, y) is integrable for each y ∈ J and we let g(y) =∫
I

f(x, y) dx.

Proof. We may assume that K is 1 by A5Q2. Let ε > 0 be given and Pε be a partition of I × J such that∣∣∣∣S(f, P ) −
∫
f

∣∣∣∣ < ε

2

for all refinement P of Pε and all Riemann sum corresponding to P . Let P Iε and P Jε be partitions of I and
J respectively, so that

Pε = P Iε × P Jε

Let P I and P J be refinements of P Iε and P Jε respectively and for each α ∈ P I and β ∈ P J chosoe xα ∈ Iα

and yβ ∈ Jβ , then the above inequality yields∣∣∣∣∣∣
∑

(α,β)∈P I ×PJ

f(xα, yβ)µ(Iα × Jβ) −
∫
I×J

f

∣∣∣∣∣∣ < ε

2

Then since µ(Iα × Jβ) = µ(Iα)µ(Jβ), we get∣∣∣∣∣∣
∑
α∈P I

∑
β∈PJ

f(xα, yβ)µ(Jβ)

µ(Iα) −
∫
I×J

f

∣∣∣∣∣∣ < ε

2

Fix P I and xα ∈ Iα, let QJε be a refinement of P Jε such that∣∣∣∣∣∣
∑
β∈QJ

ε

f(xα, yβ)µ(Jβ) − h(xα)

∣∣∣∣∣∣ < ε

2µ(I)
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for all α ∈ PI . Then combining this with the previous inequality, we have∣∣∣∣∣∣
∑
α∈P I

 ∑
β∈QJ

ε

f(xα, yβ)µ(Jβ)

µ(Iα) −
∑
α∈PJ

h(xα)µ(Iα)

∣∣∣∣∣∣
≤
∑
α∈P I

∣∣∣∣∣∣
∑
β∈QI

ε

f(xα, yβ)µ(Iβ)µ(Iα) − h(xα)µ(Iα)

∣∣∣∣∣∣
<
∑
α∈PI

ε

2µ(I) · µ(I) = ε

2

Thus we know that ∣∣∣∣∣ ∑
α∈P I

h(xα)µ(Iα) −
∫
I×J

f

∣∣∣∣∣ < ε

which implies that h is integrable and
∫
h(x) dx =

∫
f .

Corollary 14.5

Let I = [a, b] × [c, d] ⊂ R2 and f : I → R be integrable. Suppose that the function

y 7→ f(x, y) and x 7→ f(x, y)

are integrable for all x ∈ [a, b] and y ∈ [c, d], then∫ b

a

∫ d

c

f(x, y) dy dx =
∫
I

f =
∫ d

c

∫ b

a

f(x, y) dx dy

Example 14.5

Let I = [0, 1] × [0, 1] and let f(x, y) = y3exy
2 . Then∫ 1

0

(∫ 1

0
y3exy

2
dy

)
dx =

∫ 1

0

(∫ 1

0
y3exy

2
dx

)
dy

=
∫ 1

0

y3exy
2

y2

∣∣∣1
0
dy

=
∫ 1

0
y
(
ey

2
− 1
)
dy = e

2 − 1

Corollary 14.6

Let φ,ψ : [a, b] → R be continuous and let D = {(x, y) : x ∈ [a, b], and φ(x) ≤ y ≤ ψ(x)} ⊂ R2.
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Suppose that F : D → R is continuous, then

∫
D

f =
∫ b

a

(∫ ψ(x)

φ(x)
f(x, y) dy

)
dx

Proof. Notice that ∂D has content zero because it is the finite union of graphs of continuous functions on
compact set. By Corollary (14.3) f is integrable. Let I = [a, b] × [c, d] containing D and f̃ the extension of
f to I by f̃(x) = 0 for x /∈ D. For x ∈ [a, b] fixed, the function y 7→ f̃(x, y) is continuous on [c, d] at φ(x)
and ψ(x). By Fubini ∫

D

f =
∫
I

f̃ =
∫ b

a

∫ d

c

f̃(x, y) dy dx

=
∫ b

a

∫ ψ(x)

φ(x)
f(x, y) dy dx

as desired.

Lecture 35 - Friday, Jul 26

Example 14.6

Let D = {(x, y) : 1 ≤ x ≤ 3, x2 ≤ y ≤ x2 + 1}. Compute the content (the area) of D.

Proof. We have by the above Corollary that∫
D

1 =
∫ 3

1

∫ x2+1

x2
1 dy dx = 2

Example 14.7

Compute
∫
D

f where f(x, y, z) = y and D is the region bounded by the plane z = 0, x = 0, y = 0 and
x+ y + z = 1.

Proof. We can desciribe D as following:

0 ≤ x ≤ 1 0 ≤ y ≤ 1 − x 0 ≤ z ≤ 1 − x− y

Thus by Fubini’s Theorem and the above Corollary we have∫
D

f =
∫

[0,1]3
f̃ =

∫
[0,1]

∫
[0,1]2

f̃ =
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
y dz dy dx = 1

24

Note: other ways to describe D could be, for example

0 ≤ z ≤ 1 0 ≤ x ≤ 1 − z 0 ≤ y ≤ 1 − z − x
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14.7 Change of Variables

Consider the function f(x, y) = 1
(x2 + y2)3/2 defined on D where D = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}. We

wish to compute
∫
D

f .

Discovery 14.8

The idea is to use polar coordinates.

Suppose we have g(r, θ) = (r cos θ, r sin θ), then

D = g(A) where A = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ < 2π}

Hence D is replaced by a rectangle.
Also

(f ◦ g)(r, θ) = 1
r3

so everything looks simple. Can we compute
∫
D

f in terms of f ◦ g?
Consider an infinitesimal pizza-like box in polar coordinate:

The area of the shaded region would be

r2 dθ

2 − (r2 − dr) dθ
2 ≈ r dr dθ if dr ≈ 0

so ∫
D

f =
∫
A

f ◦ g dA =
∫
A

f(r cos θ, r sin θ)r dr dθ

Theorem 14.7: Change of Variable Theorem

Let ∅ ̸= U ⊂ RN be open and let ∅ ̸= K ⊂ U be compact with content. Suppose g : U → RN is
continuously differentiable and suppose that there exists Z ⊂ K with content zero such that

1. g is one-to-one on K\Z;
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2. det Jg(x) ̸= 0 for all x ∈ K\Z,

then g(K) has content and for every f : g(K) → R continuous we have∫
g(K)

f =
∫
K

(f ◦ g) |det Jg|

where det Jg : K → R is defined as x 7→ det Jg(x).

Example 14.8

Back to the example we had at the start. Consider g(r, θ) = (r cos θ, r sin θ), then g ∈ C1(R2,R2). We
have

Jg(r, θ) =
[

cos θ −r sin θ
sin θ r cos θ

]
⇒ det Jg(r, θ) = r

Notice that if A = [1, 2] × [0, 2π], then det Jg(r, θ) ̸= 0 on A and g is injective on [1, 2] × [0, 2π). Since
[1, 2] × {2π} has content zero, we apply the Change of Variable Theorem:∫

D

f =
∫
A

f(r cos θ, r sin θ)r dr dθ =
∫ 2

1

∫ 2π

0

1
r2 dθ dr =

∫ 2

1

2π
r2 dr = π

14.8 Integration with Cylindrical Coordinates

The sylindrical coordinates in R3 are

x = r cos θ y = r sin θ z = z

Thus
g : R3 → R3 g(r, θ, z) = (r cos θ, r sin θ, z)

Then g is continuously differentiable and

Jg(r, θ, z) =

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


Thus det Jg(r, θ, z) = r.

Example 14.9

Find the volume of the region D in R3 above the paraboloid z = x2 + y2, and inside the sphere
x2 + y2 + z2 = 12.

Lecture 36 - Monday, Jul 29

Proof. Write that x = r cos θ, y = r sin θ and z = z. On the paraboloid, we have z = r2 while on the sphere,
we have r =

√
12 − r2. We now want to find the the value of r where the paraboloid and the sphere meets:

97



we have
r2

max + r4
max = 12 ⇒ rmax =

√
3

Hence D = g(K) where g(r, θ, z) = (r cos θ, r sin θ, z) and

K = {(r, θ, z) : 0 ≤ r ≤
√

3, 0 ≤ θ ≤ 2π, r2 ≤ z ≤
√

12 − r2}

By the Change of Variable Theorem,

µ(D) =
∫
D

1 =
∫
K

r dz dθ dr =
∫ √

3

0

∫ 2π

0

∫ √
12−r2

r2
r dz dθ dr = 2π

[
−45

4 + 123/2

3

]

14.9 Spherical Coordinates

In the system of spherical coordinates, we have the following coordinate axes:

1. ρ: the distance to the origin, so that x2 + y2 + z2 = ρ2, (ρ ≥ 0);

2. θ: “longitude” angle from the positive x-axis, (0 ≤ θ ≤ 2π);

3. φ: “latitude” angle from the positive z-axis, (0 ≤ φ ≤ π).

Definition 14.9

We wish to denote (x, y, z) in terms of (ρ, θ, φ):

z = ρ cosφ x = ρ sinφ cos θ y = ρ sinφ sin θ

Discovery 14.9

Consider g : R3 → R3 where

g(ρ, θ, φ) = (ρ cosφ, ρ sinφ cos θ, ρ sinφ sin θ)

so g ∈ C1(R3,R3) and g is injective on

{(ρ, θ, φ) : ρ > 0, 0 ≤ θ < 2π, 0 ≤ φ ≤ π}

Moreover

Jg(ρ, θ, φ) =

cos θ sinφ −ρ sin θ sinφ ρ cos θ cosφ
sin θ sin ρ ρ cos θ sinφ ρ sin θ cosφ

cosφ 0 −ρ sinφ


so

det Jg(ρ, θ, φ) = −ρ2 sinφ

Hence det Jg(ρ, θ, φ) ̸= 0 if ρ ̸= 0 and φ ̸= 0, π.
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Example 14.10: Example in Spherical Coordinates

Suppose ρ = r is a non-zero constant and φ is also a constant not equal to 0 or π, then we get a cone
with vertex at the origin.

Example 14.11

Compute the volume of the sphere with radius r using spherical coordinates:

Proof. We have
D = {(x, y, z) : x2 + y2 + z2 = r2}

hence D = g(K), where g(ρ, θ, φ) = (ρ cosφ, ρ sinφ cos θ, ρ sinφ sin θ) and

K = {(ρ, θ, φ) : 0 < ρ < r, 0 ≤ θ < 2π, 0 ≤ φ ≤ π}

Then

µ(D) =
∫
D

1 =
∫
K

| det Jg| =
∫ r

0

∫ π

0

∫ 2π

0
ρ2 sinφ dθ dφ dr = 4π

3 r3

Result 14.1: Idea of the proof for the Change of Variable Theorem

Suppose I = [a1, b1] × · · · × [aN , bN ] and a = (a1, . . . , aN ), then

I = {a1 + h1e1 + · · · aN + hNeN : 0 ≤ hk ≤ ℓk for 0 ≤ k ≤ N}

where ℓk = bk − ak. If I is very small,

g(I) ≈

g(a) +Dg(a)


h1
...
hN

 , 0 ≤ hk ≤ ℓk for k = 1, . . . , N


where

Dg(a) =

 | |
Dg(a)e1 · · · Dg(a)eN

| |


Then column vectors are linearly independent, and they form a parallelepiped. We observe that

µ(par) =

∣∣∣∣∣∣∣det

 | |
ℓ1Dg(a)e1 · · · ℓNDg(a)eN

| |


∣∣∣∣∣∣∣ = µ(I)| det Jg(a)|

Thus
µ(g(I)) ≈ µ(I)| det Jg(a)| ⇒

∫
I

| det Jg|
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In general, take partition P of I,∫
g(K)I ≈

∑
α∈P

∫
g(Iα)

f =
∑
α∈P

f(yα)
∫
g(Iα)

1 =
∑
α∈P

f(yα)µ(g(Iα)) =
∑
α∈P

f(yα)
∫
Iα

det Jg

which yields
∫
I

f ◦ g| det Jg|.
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